zoukankan      html  css  js  c++  java
  • GridSearchCV交叉验证

    代码实现(基于逻辑回归算法):

     1 # -*- coding: utf-8 -*-
     2 """
     3 Created on Sat Sep  1 11:54:48 2018
     4 
     5 @author: zhen
     6 
     7     交叉验证
     8 """
     9 import numpy as np
    10 from sklearn import datasets
    11 from sklearn.linear_model import LogisticRegression
    12 from sklearn.model_selection import GridSearchCV
    13 import matplotlib.pyplot as plt
    14 
    15 iris = datasets.load_iris()
    16 x = iris['data'][:, 3:]
    17 y = iris['target']
    18 
    19 
    20 def report(results, n_top=3):
    21     for i in range(1, n_top + 1):
    22         candidates = np.flatnonzero(results['rank_test_score'] == i)
    23         for candidate in candidates:
    24             print("Model with rank: {0}".format(i))
    25             print("Mean validation score: {0:.3f} (std: {1:.3f})".format(
    26                    results['mean_test_score'][candidate],
    27                    results['std_test_score'][candidate]))
    28             print("Parameters: {0}".format(results['params'][candidate]))
    29             print("")
    30 
    31 
    32 param_grid = {"tol":[1e-4, 1e-3,1e-2], "C":[0.4, 0.6, 0.8]}
    33 
    34 log_reg = LogisticRegression(multi_class='ovr', solver='sag')
    35 # 采用3折交叉验证
    36 grid_search = GridSearchCV(log_reg, param_grid=param_grid, cv=3)
    37 grid_search.fit(x, y)
    38 
    39 report(grid_search.cv_results_)
    40 
    41 x_new = np.linspace(0, 3, 1000).reshape(-1, 1)
    42 y_proba = grid_search.predict_proba(x_new)
    43 y_hat = grid_search.predict(x_new)
    44 
    45 plt.plot(x_new, y_proba[:, 2], 'g-', label='Iris-Virginica')
    46 plt.plot(x_new, y_proba[:, 1], 'r-', label='Iris-Versicolour')
    47 plt.plot(x_new, y_proba[:, 0], 'b-', label='Iris-Setosa')
    48 plt.show()
    49 
    50 print(grid_search.predict([[1.7], [1.5]]))

    结果:

    总结:使用交叉验证可以实现代码自动对设定范围参数的模型进行分别训练,最后选出效果最好的参数所训练出的模型进行预测,以求达到最好的预测效果!

  • 相关阅读:
    mount挂载命令
    centos和redhat的区别
    查不认识字的方法
    Prometheus介绍及docker安装方式
    Pinpoint介绍及docker安装方式
    虚拟机安装linux
    yum命令
    docker命令
    PTA数据结构与算法题目集(中文) 7-43字符串关键字的散列映射 (25 分)
    PTA数据结构与算法题目集(中文) 7-42整型关键字的散列映射 (25 分)
  • 原文地址:https://www.cnblogs.com/yszd/p/9570845.html
Copyright © 2011-2022 走看看