ID需求:
ID的生成,可以用来映射字符串的用户ID
唯一性:确保生成的ID是全网唯一的。
有序递增性:确保生成的ID是对于某个用户或者业务是按一定的数字有序递增的。
带时间:ID里面包含时间,一眼扫过去就知道哪天的交易
唯一ID
Mysql的自增长主键(auto_increment)时,
整个系统ID唯一,ID是数字类型,而且是趋势递增的,ID简短,查询效率快
分布式id生成算法
Leaf——美团点评分布式ID生成系统
1)Leaf-segment方案:可生成全局唯一、全局有序的ID;
2)Leaf-snowflake方案:可生成全局唯一、局部有序的ID。
snowflake算法 分布式唯一id:Twitter
snowflake算法
分布式id生成算法的有很多种,Twitter的SnowFlake就是其中经典的一种。
Twitter-Snowflake算法产生的背景相当简单,为了满足Twitter每秒上万条消息的请求,每条消息都必须分配一条唯一的id,这些id还需要一些大致的顺序,让twitter可以通过一定的索引来进行检索,
而在Twitter庞大的分布式系统中不同机器产生的id必须又必须不同。
Snowflake的逻辑也非常简单,雪花算法生成64位的二进制正整数,然后转换成10进制的数。
UidGenerator是百度开源的分布式ID生成器,基于于snowflake算法的实现
示例代码
网上代码-得空看看自己实现一下
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
public class SnowFlake {
/**
* 起始的时间戳
*/
private final static long START_STMP = 1602298613000L;
/**
*
* datacenterId; //数据中心
* machineId; //机器标识
* sequence = 0L; //序列号
* lastStmp = -1L;//上一次时间戳
*/
private long datacenterId;
private long machineId;
private long sequence = 0L;
private long lastStmp = -1L;
/**
* 每一部分占用的位数
* SEQUENCE_BIT = 12; //序列号占用的位数
* MACHINE_BIT = 5; //机器标识占用的位数
* DATACENTER_BIT = 5;//数据中心占用的位数
*/
private final static long SEQUENCE_BIT = 12;
private final static long MACHINE_BIT = 5;
private final static long DATACENTER_BIT = 5;
/**
* 每一部分的最大值
*/
private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT);
private final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT);
private final static long MAX_DATACENTER_NUM = -1L ^ (-1L << DATACENTER_BIT);
/**
* 每一部分向左的位移
*/
private final static long MACHINE_LEFT = SEQUENCE_BIT;
private final static long DATACENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT;
private final static long TIMESTMP_LEFT = DATACENTER_LEFT + DATACENTER_BIT;
public SnowFlake(long datacenterId, long machineId) {
if (datacenterId > MAX_DATACENTER_NUM || datacenterId < 0) {
throw new IllegalArgumentException("datacenterId can't be greater than MAX_DATACENTER_NUM or less than 0");
}
if (machineId > MAX_MACHINE_NUM || machineId < 0) {
throw new IllegalArgumentException("machineId can't be greater than MAX_MACHINE_NUM or less than 0");
}
this.datacenterId = datacenterId;
this.machineId = machineId;
}
/**
* 产生下一个ID
* @return
*/
public synchronized long nextId() {
long currStmp = getNewstmp();
if (currStmp < lastStmp) {
throw new RuntimeException("Clock moved backwards. Refusing to generate id");
}
if (currStmp == lastStmp) {
//相同毫秒内,序列号自增
sequence = (sequence + 1) & MAX_SEQUENCE;
//同一毫秒的序列数已经达到最大
if (sequence == 0L) {
currStmp = getNextMill();
}
} else {
//不同毫秒内,序列号置为0
sequence = 0L;
}
lastStmp = currStmp;
return (currStmp - START_STMP) << TIMESTMP_LEFT
| datacenterId << DATACENTER_LEFT
| machineId << MACHINE_LEFT
| sequence;
}
private long getNextMill() {
long mill = getNewstmp();
while (mill <= lastStmp) {
mill = getNewstmp();
}
return mill;
}
private long getNewstmp() {
return System.currentTimeMillis();
}
//==============================Test=============================================
/** 测试 */
public static void main(String[] args) {
SnowFlake idWorker = new SnowFlake(0, 0);
for (int i = 0; i < 10; i++) {
long id = idWorker.nextId();
// System.out.println(Long.toBinaryString(id));
System.out.println(id);
}
//ID-mapping
/**
* mem_cd --> Long memDirMap
* Long -- > mem_cd reverseMemDirMap
*/
Map<String, Long> memDirMap = new HashMap<String, Long>();
Map<Long, String> reverseMemDirMap = new HashMap<Long, String>();
/**
* SnowFlake 算法
*/
SnowFlake idWorkerMy = new SnowFlake(1, 1);
ArrayList<String> objList = new ArrayList<String>();
/**
* 测试数据
*/
objList.add("Mem2020111166");
objList.add("Mem2020111166");
objList.add("Mem2020111199");
//
long row_id;
for (String mem_st : objList) {
System.out.println(mem_st);
if(!memDirMap.containsKey(mem_st)) {
row_id = idWorkerMy.nextId();
memDirMap.put(mem_st, row_id);
reverseMemDirMap.put(row_id, mem_st);
}
}
/**
* 查看数据
*/
System.out.println("############");
Iterator<Map.Entry<String, Long> > entries = memDirMap.entrySet().iterator();
while (entries.hasNext()) {
Map.Entry<String, Long> entry = entries.next();
System.out.println("遍历方法二 Key = " + entry.getKey() + ", Value = " + entry.getValue());
}
for(Map.Entry<Long, String> entry : reverseMemDirMap.entrySet()) {
System.out.println("遍历方法一:key ="+entry.getKey()+" Value="+entry.getValue());
}
}
}
参考:
Flink去重第四弹:bitmap精确去重 https://blog.csdn.net/u013516966/article/details/103951787/
RoaringBitmap精确去重 https://blog.csdn.net/lao000bei/article/details/105725579
https://blog.csdn.net/bjweimengshu/article/details/80162731
https://www.cnblogs.com/jiangxinlingdu/p/8440413.html