zoukankan      html  css  js  c++  java
  • 循环神经网络

    循环神经网络

    下图展示了如何基于循环神经网络实现语言模型。我们的目的是基于当前的输入与过去的输入序列,预测序列的下一个字符。循环神经网络引入一个隐藏变量(H),用(H_{t})表示(H)在时间步(t)的值。(H_{t})的计算基于(X_{t})(H_{t-1}),可以认为(H_{t})记录了到当前字符为止的序列信息,利用(H_{t})对序列的下一个字符进行预测。
    Image Name

    循环神经网络的构造

    我们先看循环神经网络的具体构造。假设(oldsymbol{X}_t in mathbb{R}^{n imes d})是时间步(t)的小批量输入,(oldsymbol{H}_t in mathbb{R}^{n imes h})是该时间步的隐藏变量,则:

    [oldsymbol{H}_t = phi(oldsymbol{X}_t oldsymbol{W}_{xh} + oldsymbol{H}_{t-1} oldsymbol{W}_{hh} + oldsymbol{b}_h). ]

    其中,(oldsymbol{W}_{xh} in mathbb{R}^{d imes h})(oldsymbol{W}_{hh} in mathbb{R}^{h imes h})(oldsymbol{b}_{h} in mathbb{R}^{1 imes h})(phi)函数是非线性激活函数。由于引入了(oldsymbol{H}_{t-1} oldsymbol{W}_{hh})(H_{t})能够捕捉截至当前时间步的序列的历史信息,就像是神经网络当前时间步的状态或记忆一样。由于(H_{t})的计算基于(H_{t-1}),上式的计算是循环的,使用循环计算的网络即循环神经网络(recurrent neural network)。

    在时间步(t),输出层的输出为:

    [oldsymbol{O}_t = oldsymbol{H}_t oldsymbol{W}_{hq} + oldsymbol{b}_q. ]

    其中(oldsymbol{W}_{hq} in mathbb{R}^{h imes q})(oldsymbol{b}_q in mathbb{R}^{1 imes q})

    裁剪梯度

    循环神经网络中较容易出现梯度衰减或梯度爆炸,这会导致网络几乎无法训练。裁剪梯度(clip gradient)是一种应对梯度爆炸的方法。假设我们把所有模型参数的梯度拼接成一个向量 (oldsymbol{g}),并设裁剪的阈值是( heta)。裁剪后的梯度

    [ minleft(frac{ heta}{|oldsymbol{g}|}, 1 ight)oldsymbol{g} ]

    (L_2)范数不超过( heta)

    困惑度

    我们通常使用困惑度(perplexity)来评价语言模型的好坏。回忆一下“softmax回归”一节中交叉熵损失函数的定义。困惑度是对交叉熵损失函数做指数运算后得到的值。特别地,

    • 最佳情况下,模型总是把标签类别的概率预测为1,此时困惑度为1;
    • 最坏情况下,模型总是把标签类别的概率预测为0,此时困惑度为正无穷;
    • 基线情况下,模型总是预测所有类别的概率都相同,此时困惑度为类别个数。

    显然,任何一个有效模型的困惑度必须小于类别个数。

    这里的模型训练函数有以下几点不同:

    1. 使用困惑度评价模型。
    2. 在迭代模型参数前裁剪梯度。
    3. 对时序数据采用不同采样方法将导致隐藏状态初始化的不同。

    pytorch的RNN

    我们使用Pytorch中的nn.RNN来构造循环神经网络。在本节中,我们主要关注nn.RNN的以下几个构造函数参数:

    • input_size - The number of expected features in the input x
    • hidden_size – The number of features in the hidden state h
    • nonlinearity – The non-linearity to use. Can be either 'tanh' or 'relu'. Default: 'tanh'
    • batch_first – If True, then the input and output tensors are provided as (batch_size, num_steps, input_size). Default: False

    这里的batch_first决定了输入的形状,我们使用默认的参数False,对应的输入形状是 (num_steps, batch_size, input_size)。

    forward函数的参数为:

    • input of shape (num_steps, batch_size, input_size): tensor containing the features of the input sequence.
    • h_0 of shape (num_layers * num_directions, batch_size, hidden_size): tensor containing the initial hidden state for each element in the batch. Defaults to zero if not provided. If the RNN is bidirectional, num_directions should be 2, else it should be 1.

    forward函数的返回值是:

    • output of shape (num_steps, batch_size, num_directions * hidden_size): tensor containing the output features (h_t) from the last layer of the RNN, for each t.
    • h_n of shape (num_layers * num_directions, batch_size, hidden_size): tensor containing the hidden state for t = num_steps.
  • 相关阅读:
    树状数组
    POJ 1178 -- 国王和骑士
    read
    优先队列
    统计八连块
    1579、Function Run Fun(记忆化搜索)
    5488: 石子归并II (区间DP+环形DP+四边形不等式优化)
    4797: 能量项链(区间DP,环形DP)
    5936 桃子的矩阵快速幂
    Happy Necklace(找规律+矩阵快速幂)
  • 原文地址:https://www.cnblogs.com/yu212223/p/12309964.html
Copyright © 2011-2022 走看看