zoukankan      html  css  js  c++  java
  • 通过风扇FG脚检测风扇转速

    1、概述

        通过风扇FG脚获取风扇转速。

    2、分析

        根据风扇规格书可知风扇风速=60/(2*脉冲周期),周期T=1/频率。那么我们需要获取FG脚上的脉冲频率,即可获取风扇风速。

    3、解决方法

        利用边沿触发中断利用定时器获取1s进入中断的次数即可获取脉冲频率。

    (1)注册检测脚

    gpio-pwms {
    		compatible = "gpio-pwms";
    		pinctrl-names = "default";
    		pwm1 {
    			label = "pwm1";
    			gpios = <&pio 0 6 GPIO_ACTIVE_HIGH>;
    			gpios-fg =  <&pio 0  17 GPIO_ACTIVE_HIGH>;
    		};
    
    		pwm2 {
    			label = "pwm2";
    			gpios = <&pio 6 9 GPIO_ACTIVE_HIGH>;
    			gpios-fg =  <&pio 0  3 GPIO_ACTIVE_HIGH>;
    		};
    		
    		pwm3{
    			label = "pwm3";
    			gpios = <&pio 6 11 GPIO_ACTIVE_HIGH>;	
    			gpios-fg =  <&pio 0 21 GPIO_ACTIVE_HIGH>;
    		};	
    		
    		pwm4{
    			label = "pwm4";
    			gpios = <&pio 6 12 GPIO_ACTIVE_HIGH>;	
    			gpios-fg =  <&pio 0 20 GPIO_ACTIVE_HIGH>;
    		};	
     	};
     
    

      

    (2)编写驱动

    • 解析dts文件,获取fg脚
    	for_each_child_of_node(node, fg) 
    	{
    		enum of_gpio_flags flagsfg;
    
    		if (!of_find_property(fg, "gpios-fg", NULL)) 
    		{
    			pdata->npwms--;
    			printk( "Fail to find gpios-fg
    ");
    			continue;
    		}
    
    		pwm = &pdata->pwms[i++];
    		pwm->gpio_fg = of_get_named_gpio_flags(fg,"gpios-fg", 0, &flagsfg);
    		printk("pwm->gpio-fg=%d,flags=%d",pwm->gpio_fg,flagsfg);
    		if (pwm->gpio_fg < 0)
    		{
    			error = pwm->gpio_fg;
    			if (error != -ENOENT) 
    			{
    				if (error != -EPROBE_DEFER)
    					dev_err(dev,
    						"Failed to get gpio-fg flags, error: %d
    ",
    						error);
    				return ERR_PTR(error);
    			}
    		} 
    		
    	}
    

      

    • 申请中断
     switch(gpiofg)
    	{
    		case 17:
    		       error= devm_gpio_request(dev, gpiofg,"fan1_FG");  break;
    		case 3:
    		      error= devm_gpio_request(dev, gpiofg,"fan2_FG");  break;
    		case  21:
    		      error= devm_gpio_request(dev, gpiofg,"fan3_FG");  break;
    		case 20:
    		      error= devm_gpio_request(dev, gpiofg,"fan4_FG");  break;
    		default:
    			break;
    	}
    	
    	if (error){
    		printk( "unable to request gpio %u, err=%d
    ",
    				gpiofg, error);
    		}
    	gpwm->irq_fg= gpio_to_irq(gpiofg); //获取一个gpio对应的中断号
    	if (gpwm->irq_fg < 0)
    	{
    	     printk("return irq number error!");
    	}
    		
    	
    
    	switch(gpiofg)
    	{
    		case 17:
    		        pin1FGirq = gpwm->irq_fg;
    			INIT_WORK(&gpwm->gpiofg_work, fan1_speed);   //初始化工作队列
    			irq_set_irq_type(gpwm->irq_fg, IRQ_TYPE_EDGE_FALLING);	  //设置触发类型
    			error = devm_request_irq(&pdev->dev, gpwm->irq_fg, get_fan_speed_irq_handler,
    		       IRQF_SHARED,"fan1_FG", gpwm);   //申请中断设置中断类型为 共享中断
    				break;
    		case 3:
    			  pin2FGirq = gpwm->irq_fg;
    			  INIT_WORK(&gpwm->gpiofg_work, fan2_speed);
    			error = devm_request_irq(&pdev->dev, gpwm->irq_fg, get_fan_speed_irq_handler,
    		       IRQF_SHARED,"fan2_FG", gpwm);
    			  break;
    		case  21:
    			  pin3FGirq = gpwm->irq_fg;  
    			  INIT_WORK(&gpwm->gpiofg_work, fan3_speed);
    			error = devm_request_irq(&pdev->dev, gpwm->irq_fg, get_fan_speed_irq_handler,
    		       IRQF_SHARED,"fan3_FG", gpwm);	
    			  break;
    		case 20:
    			  pin4FGirq = gpwm->irq_fg;  
    			  INIT_WORK(&gpwm->gpiofg_work, fan4_speed);
    			error = devm_request_irq(&pdev->dev, gpwm->irq_fg, get_fan_speed_irq_handler,
    		       IRQF_SHARED,"fan4_FG", gpwm);	  
    			  break;
    		default:
    			break;
    	}
    	
    	
    	if (error) {
    			printk( "failed to  request irq, err=%d
    ", error);
    		}
    	  disable_irq(gpwm->irq_fg);   //默认关闭中断
    	}
     
    • 中断服务程序
    static irqreturn_t get_fan_speed_irq_handler(int irq, void *dev_id)
    {
    	struct pwm_chip *gpiofg_data = dev_id;
    	schedule_work(&gpiofg_data->gpiofg_work);  //schedule_work(work)来通知内核线程,然后中断结束后,再去继续执行work对应的func函数
    	return IRQ_HANDLED;
    }
    注意:
        //中断服务程序的返回值必须为IRQ_HANDLED
        /**
     * enum irqreturn
     * @IRQ_NONE		interrupt was not from this device or was not handled
     * @IRQ_HANDLED		interrupt was handled by this device
     * @IRQ_WAKE_THREAD	handler requests to wake the handler thread
     */
    enum irqreturn {
    	IRQ_NONE		= (0 << 0),
    	IRQ_HANDLED		= (1 << 0),
    	IRQ_WAKE_THREAD		= (1 << 1),
    };

      中断服务程序有三个返回值,三个值代表不同意思,如果返回值为IR_NONE,系统会认为这个中断没有被处理(但是中断程序执行了),当 未处理中断次数超过100000次时,系统会disable掉这个中断。系统会认为中断卡死了,这是共享中断的特性,会根据中断服务程序的返回值判断中断程序是否被处理。

         当一个中断号上有多个中断共享的时候,该中断来的时候,内核会依次调用共享该中断号的各个中断处理函数,如果中断处理函数检测到该中断不是自己的中断时就会返回IRQ_NONE,这时内核就会调用下一个中断处理函数,而这些中断处理函数中必须至少有一个返回IRQ_HANDLED告知内核该中断是自己的中断,已经正常处理,若内核依次调用完所有该中断号的中断处理函数仍未得到IRQ_HANDLED的返回值,内核就会报告上述错误,并在该中断出现一定次数后关闭该中断。即只有中断处理函数返回 IRQ_HANDLED ,这个中断才是被正确完成的。

    中断卡死的处理过程:

    //Linux-4.14.25/kernel/irq/spurious.c
    
    irq = irq_desc_get_irq(desc);
    	if (unlikely(try_misrouted_irq(irq, desc, action_ret))) {
    		int ok = misrouted_irq(irq);
    		if (action_ret == IRQ_NONE)
    			desc->irqs_unhandled -= ok;
    	}
    
    	desc->irq_count++;
    	if (likely(desc->irq_count < 100000))
    		return;
    
    	desc->irq_count = 0;
    	if (unlikely(desc->irqs_unhandled > 99900)) {
    		/*
    		 * The interrupt is stuck
    		 */
    		__report_bad_irq(desc, action_ret);
    		/*
    		 * Now kill the IRQ
    		 */
    		printk(KERN_EMERG "Disabling IRQ #%d
    ", irq);
    		desc->istate |= IRQS_SPURIOUS_DISABLED;
    		desc->depth++;
    		irq_disable(desc);
    
    		mod_timer(&poll_spurious_irq_timer,
    			  jiffies + POLL_SPURIOUS_IRQ_INTERVAL);
    	}
    	desc->irqs_unhandled = 0;
    } 

    查看中断信息:

    • 工作队列的任务
    static void fan1_speed(struct work_struct *ws)
    {
        	  pinFG1_frequency++;
    }
    static void fan2_speed(struct work_struct *ws)
    {
        	  pinFG2_frequency++;
    }
    static void fan3_speed(struct work_struct *ws)
    {
        	  pinFG3_frequency++;
    }
    static void fan4_speed(struct work_struct *ws)
    {
        	  pinFG4_frequency++;
    }
    

      

    工作队列的介绍

    在中断处理中,经常用到工作队列,这样便能缩短中断处理时的时间

    //工作队列初始化函数

    INIT_WORK(work, func);

    中断中通过调用schedule_work(work)来通知内核线程,然后中断结束后,再去继续执行work对应的func函数

    示例

    当中断来了,立马调用schedule_work(work),然后退出.

    中断结束后,内核便会调用_work对应的func函数,最后才来读取按键值,上报按键值,这样就大大缩短了中断处理时间

    • 定时器初始化
    static void fan1_init_timer(void)
    
    {
    	fan1timer.expires = jiffies+100;//设定 超时时间,100代表1秒?
    	timer_setup(&fan1timer, fan1_timer, 0);   
    	add_timer(&fan1timer); //添加定时器,定时器开始生效
    	enable_irq(pin1FGirq);
    }
    
    static void fan2_init_timer(void)
    {
    	fan2timer.expires = jiffies+100;//设定 超时时间,100代表1秒
    	timer_setup(&fan2timer, fan2_timer, 0);  //准备timer,并设置超时时执行的函数。
    	add_timer(&fan2timer); //添加定时器,定时器开始生效
    	enable_irq(pin2FGirq);
    }
    
    static void fan3_init_timer(void)
    {
    	fan3timer.expires = jiffies+100;//设定 超时时间,100代表1秒
    	timer_setup(&fan3timer, fan3_timer, 0);
    	add_timer(&fan3timer); //添加定时器,定时器开始生效
    	enable_irq(pin3FGirq);
    }
    
    static void fan4_init_timer(void)
    {
    	fan4timer.expires = jiffies+100;//设定 超时时间,100代表1秒
    	timer_setup(&fan4timer, fan4_timer, 0);
    	add_timer(&fan4timer); //添加定时器,定时器开始生效
    	enable_irq(pin4FGirq);
    }
    • 定时器超时处理函数
    static void fan1_timer(struct timer_list *t)
    {
    	pinFG_frequency[0] = pinFG1_frequency;
    	pinFG1_frequency = 0;
    	mod_timer(&fan1timer,jiffies+100);  //	修改定时器的expire
    }
    
    static void fan2_timer(struct timer_list *t)
    {
    	pinFG_frequency[1] = pinFG2_frequency;
    	pinFG2_frequency = 0;
    	mod_timer(&fan2timer,jiffies+100);	
    }
    
    static void fan3_timer(struct timer_list *t)
    {
    
    	pinFG_frequency[2] = pinFG3_frequency;
    	pinFG3_frequency = 0;
    	mod_timer(&fan3timer,jiffies+100);	
    }
    
    static void fan4_timer(struct timer_list *t)
    {
    	pinFG_frequency[3] = pinFG4_frequency;
    	pinFG4_frequency = 0;
    	mod_timer(&fan4timer,jiffies+100);	
    }
    • read函数(应用层read会调用到这个函数)
    ssize_t pwm_drv_read (struct file *filp, char __user *userbuf, size_t count, loff_t *fpos)
    {
    	int ret=0, i = 0,j=0;
    	unsigned char tmp[8] ={0};
    	//应用层从内核读取数据时,只能一个字节一个字节读,所以将频率short型数据要分成两个单字节数据读。
    	while(i<8)
    	{
    		tmp[i] = pinFG_frequency[j]>>8 ;
    		tmp[i+1] = pinFG_frequency[j];
    		i+=2;
    		j++;
    	}
          ret= copy_to_user(userbuf, tmp, sizeof(tmp)/sizeof(tmp[0]));
    	if(ret==1)
    	{
    	     printk("copy data error!
    ");
    		ret = -1;
    	}
     	  return ret;
    

      

    (3)应用层获取数据 

    void fan_get_rotating_speed(uint16_t *arg,uint8_t len)
    {
    	
    	int fd=-1,ret=-1,i=0,j=0;
    	uint8_t recv_buff[8]={0};
    	uint16_t pinFG_Freqency[4]={0};
    	printf("fan_get_rotating_speed
    ");
    	
    	fd = open(dev_fan[0].description,O_RDWR );	 
    	if(fd < 0)
    	{			
    		printf("failed to open pwm0 failed!
    ");
    	}
    	//读取数据
    	ret = read(fd,recv_buff,len*2);	
    	if(ret<0)
    	{
    		printf("get fan rotating speed error!");	
    	}
           //将8个字节的数据合成4个short型数据
    	 while(i<8)
    	{
    		pinFG_Freqency[j] = (unsigned short)recv_buff[i]<<8|recv_buff[i+1];
    		i+=2;
    		j++;
    	}
    	//计算转速
    	 for(i=0;i<len;i++)
    	 {
    	 	arg[i]=(uint16_t)((60*pinFG_Freqency[i])/2);  
    	 }
    	close(fd);
    }
    

      

    driver-ipollo.c中去调用

     else if (strcasecmp(option, "getallstats") == 0) {  
    		char tmp_str[64] = { 0 };
    		uint16_t fan_speed[4]={0};
    		fan_get_rotating_speed(fan_speed,sizeof(fan_speed)/sizeof(fan_speed[0]));
    		sprintf(tmp_str, ""fanspeed[0:%d]:[1:%d][2:%d][3:%d]"",fan_speed[0],fan_speed[1],fan_speed[2],fan_speed[3]);
    		strcat(replybuf, tmp_str);

    可通过命令去获取风速:

    
    
    echo -n "ascset|0,getallstats" | nc 192.168.1.100 4028 && echo
    
    
    
     
  • 相关阅读:
    three.js详解
    Javascript的原型
    Transform? Transition? Animation?
    Backbone源码分析Backbone架构+流程图
    对象是引用的注意原型中的属性改变
    MySQL+ JSP+Tomcat開發指引
    MySQL應用分析
    SQL 日期
    MySQL安裝
    MSE错误应对分享
  • 原文地址:https://www.cnblogs.com/yuanqiangfei/p/15204933.html
Copyright © 2011-2022 走看看