zoukankan      html  css  js  c++  java
  • 最邻近分类

    数据集seeds.tsv

    15.26    14.84    0.871    5.763    3.312    2.221    5.22    Kama
    14.88    14.57    0.8811    5.554    3.333    1.018    4.956    Kama
    14.29    14.09    0.905    5.291    3.337    2.699    4.825    Kama
    13.84    13.94    0.8955    5.324    3.379    2.259    4.805    Kama
    16.14    14.99    0.9034    5.658    3.562    1.355    5.175    Kama
    14.38    14.21    0.8951    5.386    3.312    2.462    4.956    Kama
    14.69    14.49    0.8799    5.563    3.259    3.586    5.219    Kama
    14.11    14.1    0.8911    5.42    3.302    2.7    5.0    Kama
    16.63    15.46    0.8747    6.053    3.465    2.04    5.877    Kama
    16.44    15.25    0.888    5.884    3.505    1.969    5.533    Kama
    15.26    14.85    0.8696    5.714    3.242    4.543    5.314    Kama
    14.03    14.16    0.8796    5.438    3.201    1.717    5.001    Kama
    13.89    14.02    0.888    5.439    3.199    3.986    4.738    Kama
    13.78    14.06    0.8759    5.479    3.156    3.136    4.872    Kama
    13.74    14.05    0.8744    5.482    3.114    2.932    4.825    Kama
    14.59    14.28    0.8993    5.351    3.333    4.185    4.781    Kama
    13.99    13.83    0.9183    5.119    3.383    5.234    4.781    Kama
    15.69    14.75    0.9058    5.527    3.514    1.599    5.046    Kama
    14.7    14.21    0.9153    5.205    3.466    1.767    4.649    Kama
    12.72    13.57    0.8686    5.226    3.049    4.102    4.914    Kama
    14.16    14.4    0.8584    5.658    3.129    3.072    5.176    Kama
    14.11    14.26    0.8722    5.52    3.168    2.688    5.219    Kama
    15.88    14.9    0.8988    5.618    3.507    0.7651    5.091    Kama
    12.08    13.23    0.8664    5.099    2.936    1.415    4.961    Kama
    15.01    14.76    0.8657    5.789    3.245    1.791    5.001    Kama
    16.19    15.16    0.8849    5.833    3.421    0.903    5.307    Kama
    13.02    13.76    0.8641    5.395    3.026    3.373    4.825    Kama
    12.74    13.67    0.8564    5.395    2.956    2.504    4.869    Kama
    14.11    14.18    0.882    5.541    3.221    2.754    5.038    Kama
    13.45    14.02    0.8604    5.516    3.065    3.531    5.097    Kama
    13.16    13.82    0.8662    5.454    2.975    0.8551    5.056    Kama
    15.49    14.94    0.8724    5.757    3.371    3.412    5.228    Kama
    14.09    14.41    0.8529    5.717    3.186    3.92    5.299    Kama
    13.94    14.17    0.8728    5.585    3.15    2.124    5.012    Kama
    15.05    14.68    0.8779    5.712    3.328    2.129    5.36    Kama
    16.12    15.0    0.9    5.709    3.485    2.27    5.443    Kama
    16.2    15.27    0.8734    5.826    3.464    2.823    5.527    Kama
    17.08    15.38    0.9079    5.832    3.683    2.956    5.484    Kama
    14.8    14.52    0.8823    5.656    3.288    3.112    5.309    Kama
    14.28    14.17    0.8944    5.397    3.298    6.685    5.001    Kama
    13.54    13.85    0.8871    5.348    3.156    2.587    5.178    Kama
    13.5    13.85    0.8852    5.351    3.158    2.249    5.176    Kama
    13.16    13.55    0.9009    5.138    3.201    2.461    4.783    Kama
    15.5    14.86    0.882    5.877    3.396    4.711    5.528    Kama
    15.11    14.54    0.8986    5.579    3.462    3.128    5.18    Kama
    13.8    14.04    0.8794    5.376    3.155    1.56    4.961    Kama
    15.36    14.76    0.8861    5.701    3.393    1.367    5.132    Kama
    14.99    14.56    0.8883    5.57    3.377    2.958    5.175    Kama
    14.79    14.52    0.8819    5.545    3.291    2.704    5.111    Kama
    14.86    14.67    0.8676    5.678    3.258    2.129    5.351    Kama
    14.43    14.4    0.8751    5.585    3.272    3.975    5.144    Kama
    15.78    14.91    0.8923    5.674    3.434    5.593    5.136    Kama
    14.49    14.61    0.8538    5.715    3.113    4.116    5.396    Kama
    14.33    14.28    0.8831    5.504    3.199    3.328    5.224    Kama
    14.52    14.6    0.8557    5.741    3.113    1.481    5.487    Kama
    15.03    14.77    0.8658    5.702    3.212    1.933    5.439    Kama
    14.46    14.35    0.8818    5.388    3.377    2.802    5.044    Kama
    14.92    14.43    0.9006    5.384    3.412    1.142    5.088    Kama
    15.38    14.77    0.8857    5.662    3.419    1.999    5.222    Kama
    12.11    13.47    0.8392    5.159    3.032    1.502    4.519    Kama
    11.42    12.86    0.8683    5.008    2.85    2.7    4.607    Kama
    11.23    12.63    0.884    4.902    2.879    2.269    4.703    Kama
    12.36    13.19    0.8923    5.076    3.042    3.22    4.605    Kama
    13.22    13.84    0.868    5.395    3.07    4.157    5.088    Kama
    12.78    13.57    0.8716    5.262    3.026    1.176    4.782    Kama
    12.88    13.5    0.8879    5.139    3.119    2.352    4.607    Kama
    14.34    14.37    0.8726    5.63    3.19    1.313    5.15    Kama
    14.01    14.29    0.8625    5.609    3.158    2.217    5.132    Kama
    14.37    14.39    0.8726    5.569    3.153    1.464    5.3    Kama
    12.73    13.75    0.8458    5.412    2.882    3.533    5.067    Kama
    17.63    15.98    0.8673    6.191    3.561    4.076    6.06    Rosa
    16.84    15.67    0.8623    5.998    3.484    4.675    5.877    Rosa
    17.26    15.73    0.8763    5.978    3.594    4.539    5.791    Rosa
    19.11    16.26    0.9081    6.154    3.93    2.936    6.079    Rosa
    16.82    15.51    0.8786    6.017    3.486    4.004    5.841    Rosa
    16.77    15.62    0.8638    5.927    3.438    4.92    5.795    Rosa
    17.32    15.91    0.8599    6.064    3.403    3.824    5.922    Rosa
    20.71    17.23    0.8763    6.579    3.814    4.451    6.451    Rosa
    18.94    16.49    0.875    6.445    3.639    5.064    6.362    Rosa
    17.12    15.55    0.8892    5.85    3.566    2.858    5.746    Rosa
    16.53    15.34    0.8823    5.875    3.467    5.532    5.88    Rosa
    18.72    16.19    0.8977    6.006    3.857    5.324    5.879    Rosa
    20.2    16.89    0.8894    6.285    3.864    5.173    6.187    Rosa
    19.57    16.74    0.8779    6.384    3.772    1.472    6.273    Rosa
    19.51    16.71    0.878    6.366    3.801    2.962    6.185    Rosa
    18.27    16.09    0.887    6.173    3.651    2.443    6.197    Rosa
    18.88    16.26    0.8969    6.084    3.764    1.649    6.109    Rosa
    18.98    16.66    0.859    6.549    3.67    3.691    6.498    Rosa
    21.18    17.21    0.8989    6.573    4.033    5.78    6.231    Rosa
    20.88    17.05    0.9031    6.45    4.032    5.016    6.321    Rosa
    20.1    16.99    0.8746    6.581    3.785    1.955    6.449    Rosa
    18.76    16.2    0.8984    6.172    3.796    3.12    6.053    Rosa
    18.81    16.29    0.8906    6.272    3.693    3.237    6.053    Rosa
    18.59    16.05    0.9066    6.037    3.86    6.001    5.877    Rosa
    18.36    16.52    0.8452    6.666    3.485    4.933    6.448    Rosa
    16.87    15.65    0.8648    6.139    3.463    3.696    5.967    Rosa
    19.31    16.59    0.8815    6.341    3.81    3.477    6.238    Rosa
    18.98    16.57    0.8687    6.449    3.552    2.144    6.453    Rosa
    18.17    16.26    0.8637    6.271    3.512    2.853    6.273    Rosa
    18.72    16.34    0.881    6.219    3.684    2.188    6.097    Rosa
    16.41    15.25    0.8866    5.718    3.525    4.217    5.618    Rosa
    17.99    15.86    0.8992    5.89    3.694    2.068    5.837    Rosa
    19.46    16.5    0.8985    6.113    3.892    4.308    6.009    Rosa
    19.18    16.63    0.8717    6.369    3.681    3.357    6.229    Rosa
    18.95    16.42    0.8829    6.248    3.755    3.368    6.148    Rosa
    18.83    16.29    0.8917    6.037    3.786    2.553    5.879    Rosa
    18.85    16.17    0.9056    6.152    3.806    2.843    6.2    Rosa
    17.63    15.86    0.88    6.033    3.573    3.747    5.929    Rosa
    19.94    16.92    0.8752    6.675    3.763    3.252    6.55    Rosa
    18.55    16.22    0.8865    6.153    3.674    1.738    5.894    Rosa
    18.45    16.12    0.8921    6.107    3.769    2.235    5.794    Rosa
    19.38    16.72    0.8716    6.303    3.791    3.678    5.965    Rosa
    19.13    16.31    0.9035    6.183    3.902    2.109    5.924    Rosa
    19.14    16.61    0.8722    6.259    3.737    6.682    6.053    Rosa
    20.97    17.25    0.8859    6.563    3.991    4.677    6.316    Rosa
    19.06    16.45    0.8854    6.416    3.719    2.248    6.163    Rosa
    18.96    16.2    0.9077    6.051    3.897    4.334    5.75    Rosa
    19.15    16.45    0.889    6.245    3.815    3.084    6.185    Rosa
    18.89    16.23    0.9008    6.227    3.769    3.639    5.966    Rosa
    20.03    16.9    0.8811    6.493    3.857    3.063    6.32    Rosa
    20.24    16.91    0.8897    6.315    3.962    5.901    6.188    Rosa
    18.14    16.12    0.8772    6.059    3.563    3.619    6.011    Rosa
    16.17    15.38    0.8588    5.762    3.387    4.286    5.703    Rosa
    18.43    15.97    0.9077    5.98    3.771    2.984    5.905    Rosa
    15.99    14.89    0.9064    5.363    3.582    3.336    5.144    Rosa
    18.75    16.18    0.8999    6.111    3.869    4.188    5.992    Rosa
    18.65    16.41    0.8698    6.285    3.594    4.391    6.102    Rosa
    17.98    15.85    0.8993    5.979    3.687    2.257    5.919    Rosa
    20.16    17.03    0.8735    6.513    3.773    1.91    6.185    Rosa
    17.55    15.66    0.8991    5.791    3.69    5.366    5.661    Rosa
    18.3    15.89    0.9108    5.979    3.755    2.837    5.962    Rosa
    18.94    16.32    0.8942    6.144    3.825    2.908    5.949    Rosa
    15.38    14.9    0.8706    5.884    3.268    4.462    5.795    Rosa
    16.16    15.33    0.8644    5.845    3.395    4.266    5.795    Rosa
    15.56    14.89    0.8823    5.776    3.408    4.972    5.847    Rosa
    15.38    14.66    0.899    5.477    3.465    3.6    5.439    Rosa
    17.36    15.76    0.8785    6.145    3.574    3.526    5.971    Rosa
    15.57    15.15    0.8527    5.92    3.231    2.64    5.879    Rosa
    15.6    15.11    0.858    5.832    3.286    2.725    5.752    Rosa
    16.23    15.18    0.885    5.872    3.472    3.769    5.922    Rosa
    13.07    13.92    0.848    5.472    2.994    5.304    5.395    Canadian
    13.32    13.94    0.8613    5.541    3.073    7.035    5.44    Canadian
    13.34    13.95    0.862    5.389    3.074    5.995    5.307    Canadian
    12.22    13.32    0.8652    5.224    2.967    5.469    5.221    Canadian
    11.82    13.4    0.8274    5.314    2.777    4.471    5.178    Canadian
    11.21    13.13    0.8167    5.279    2.687    6.169    5.275    Canadian
    11.43    13.13    0.8335    5.176    2.719    2.221    5.132    Canadian
    12.49    13.46    0.8658    5.267    2.967    4.421    5.002    Canadian
    12.7    13.71    0.8491    5.386    2.911    3.26    5.316    Canadian
    10.79    12.93    0.8107    5.317    2.648    5.462    5.194    Canadian
    11.83    13.23    0.8496    5.263    2.84    5.195    5.307    Canadian
    12.01    13.52    0.8249    5.405    2.776    6.992    5.27    Canadian
    12.26    13.6    0.8333    5.408    2.833    4.756    5.36    Canadian
    11.18    13.04    0.8266    5.22    2.693    3.332    5.001    Canadian
    11.36    13.05    0.8382    5.175    2.755    4.048    5.263    Canadian
    11.19    13.05    0.8253    5.25    2.675    5.813    5.219    Canadian
    11.34    12.87    0.8596    5.053    2.849    3.347    5.003    Canadian
    12.13    13.73    0.8081    5.394    2.745    4.825    5.22    Canadian
    11.75    13.52    0.8082    5.444    2.678    4.378    5.31    Canadian
    11.49    13.22    0.8263    5.304    2.695    5.388    5.31    Canadian
    12.54    13.67    0.8425    5.451    2.879    3.082    5.491    Canadian
    12.02    13.33    0.8503    5.35    2.81    4.271    5.308    Canadian
    12.05    13.41    0.8416    5.267    2.847    4.988    5.046    Canadian
    12.55    13.57    0.8558    5.333    2.968    4.419    5.176    Canadian
    11.14    12.79    0.8558    5.011    2.794    6.388    5.049    Canadian
    12.1    13.15    0.8793    5.105    2.941    2.201    5.056    Canadian
    12.44    13.59    0.8462    5.319    2.897    4.924    5.27    Canadian
    12.15    13.45    0.8443    5.417    2.837    3.638    5.338    Canadian
    11.35    13.12    0.8291    5.176    2.668    4.337    5.132    Canadian
    11.24    13.0    0.8359    5.09    2.715    3.521    5.088    Canadian
    11.02    13.0    0.8189    5.325    2.701    6.735    5.163    Canadian
    11.55    13.1    0.8455    5.167    2.845    6.715    4.956    Canadian
    11.27    12.97    0.8419    5.088    2.763    4.309    5.0    Canadian
    11.4    13.08    0.8375    5.136    2.763    5.588    5.089    Canadian
    10.83    12.96    0.8099    5.278    2.641    5.182    5.185    Canadian
    10.8    12.57    0.859    4.981    2.821    4.773    5.063    Canadian
    11.26    13.01    0.8355    5.186    2.71    5.335    5.092    Canadian
    10.74    12.73    0.8329    5.145    2.642    4.702    4.963    Canadian
    11.48    13.05    0.8473    5.18    2.758    5.876    5.002    Canadian
    12.21    13.47    0.8453    5.357    2.893    1.661    5.178    Canadian
    11.41    12.95    0.856    5.09    2.775    4.957    4.825    Canadian
    12.46    13.41    0.8706    5.236    3.017    4.987    5.147    Canadian
    12.19    13.36    0.8579    5.24    2.909    4.857    5.158    Canadian
    11.65    13.07    0.8575    5.108    2.85    5.209    5.135    Canadian
    12.89    13.77    0.8541    5.495    3.026    6.185    5.316    Canadian
    11.56    13.31    0.8198    5.363    2.683    4.062    5.182    Canadian
    11.81    13.45    0.8198    5.413    2.716    4.898    5.352    Canadian
    10.91    12.8    0.8372    5.088    2.675    4.179    4.956    Canadian
    11.23    12.82    0.8594    5.089    2.821    7.524    4.957    Canadian
    10.59    12.41    0.8648    4.899    2.787    4.975    4.794    Canadian
    10.93    12.8    0.839    5.046    2.717    5.398    5.045    Canadian
    11.27    12.86    0.8563    5.091    2.804    3.985    5.001    Canadian
    11.87    13.02    0.8795    5.132    2.953    3.597    5.132    Canadian
    10.82    12.83    0.8256    5.18    2.63    4.853    5.089    Canadian
    12.11    13.27    0.8639    5.236    2.975    4.132    5.012    Canadian
    12.8    13.47    0.886    5.16    3.126    4.873    4.914    Canadian
    12.79    13.53    0.8786    5.224    3.054    5.483    4.958    Canadian
    13.37    13.78    0.8849    5.32    3.128    4.67    5.091    Canadian
    12.62    13.67    0.8481    5.41    2.911    3.306    5.231    Canadian
    12.76    13.38    0.8964    5.073    3.155    2.828    4.83    Canadian
    12.38    13.44    0.8609    5.219    2.989    5.472    5.045    Canadian
    12.67    13.32    0.8977    4.984    3.135    2.3    4.745    Canadian
    11.18    12.72    0.868    5.009    2.81    4.051    4.828    Canadian
    12.7    13.41    0.8874    5.183    3.091    8.456    5.0    Canadian
    12.37    13.47    0.8567    5.204    2.96    3.919    5.001    Canadian
    12.19    13.2    0.8783    5.137    2.981    3.631    4.87    Canadian
    11.23    12.88    0.8511    5.14    2.795    4.325    5.003    Canadian
    13.2    13.66    0.8883    5.236    3.232    8.315    5.056    Canadian
    11.84    13.21    0.8521    5.175    2.836    3.598    5.044    Canadian
    12.3    13.34    0.8684    5.243    2.974    5.637    5.063    Canadian
    View Code

    最近邻算法knn.py

    #coding:utf-8
    import numpy as np
    def learn_model(k, features, labels):
        return k, features.copy(),labels.copy()
    
    def plurality(xs):#xs最近邻的标签
        from collections import defaultdict #支持缺省值的集合子类
        counts = defaultdict(int)    #给字典value元素添加默认类型 int
        for x in xs:
            counts[x] += 1    #对 xs 中的元素进行计数
        maxv = max(counts.values())    #返回出现次数最多的标签
        for k,v in counts.items():
            if v == maxv:
                return k
    
    def apply_model(features, model):#训练集、训练标签
        k, train_feats, labels = model#k, features.copy(),labels.copy()
        results = []
        for f in features:
            label_dist = []  #用来存(k维最近邻,标签)元组
            for t,ell in zip(train_feats, labels):
                label_dist.append( (np.linalg.norm(f-t), ell) )#(norm(f-t)n维的距离、标签) norm:向量标准化
            label_dist.sort(key=lambda d_ell: d_ell[0])#按元祖第一个元素排序
            label_dist = label_dist[:k] #取前 k (k = 1) 个数值
            results.append(plurality([ell for _,ell in label_dist]))# _ 无实际意义
        return np.array(results)    #返回预测标签数组
    
    def accuracy(features, labels, model):
        preds = apply_model(features, model)
        return np.mean(preds == labels)

    主函数seeds_knn.py

    #coding:utf-8
    from load import load_dataset
    import numpy as np
    from knn import learn_model, apply_model, accuracy
    
    features,labels = load_dataset('seeds') #数据特征、标签
    
    def cross_validate(features, labels):
        error = 0.0
        for fold in range(10):                #十折交叉验证
            training = np.ones(len(features), bool)
            training[fold::10] = 0
            testing = ~training
            model = learn_model(1, features[training], labels[training])#k = 1
            test_error = accuracy(features[testing], labels[testing], model)#预测值与真实值比较
            error += test_error
    
        return error/ 10.0    #取十次的平均
    
    error = cross_validate(features, labels) #数据集、标签
    print('Ten fold cross-validated error was {0:.1%}.'.format(error))
    
    features -= features.mean(0)    #转化为无量纲  从特征值中减去特征的平均值
    features /= features.std(0)                        #将特征值除以它的标准差
    error = cross_validate(features, labels)
    print('Ten fold cross-validated error after z-scoring was {0:.1%}.'.format(error))

     load.py

    import numpy as np
    
    def load_dataset(dataset_name):
        data = []
        label = []
        with open('{0}.tsv'.format(dataset_name),'r') as f:
            lines = f.readlines()
            for line in lines:
                linedata = line.strip().split('	')
                data.append([float(da) for da in linedata[:-1]])# 从第0列到倒数第一列
                label.append(linedata[-1])
            data = np.array(data)
            label = np.array(label)
        return data,label

    k分别取不同值时的结果:

  • 相关阅读:
    linux c++ 实现http请求
    pip 换源
    Web API接口
    DRF框架知识总览
    jq+bs插件
    element-ui插件
    axios插件
    前端存储数据汇总
    Vuex插件
    全局配置css和js
  • 原文地址:https://www.cnblogs.com/yuanzhenliu/p/5467304.html
Copyright © 2011-2022 走看看