zoukankan      html  css  js  c++  java
  • 读书笔记:机器学习实战(2)——章3的决策树代码和个人理解与注释

    首先是对于决策树的个人理解:
    通过寻找最大信息增益(或最小信息熵)的分类特征,从部分已知类别的数据中提取分类规则的一种分类方法。
    信息熵:
    这里写图片描述
    其中,log底数为2,额,好吧,图片我从百度截的。。
    这里只解释到它是一种信息的期望值,深入的请看维基百科

    http://zh.wikipedia.org/zh-sg/熵_(信息论)

    信息增益:划分数据集前后的信息发生的变化(原书定义)
    实际应用想要找到具有最大信息增益的分类树结构,就是使原始数据的信息熵减去分类后的信息熵的差值最大,原始数据的信息熵可以理解为常数,那么想要最大信息增益,也就是要寻找一种分类方法,是按照分类方法分类后的数据集的信息熵最小。(另:也可以选择“不纯度”或“错误率”作为评估参数,不纯度,维基百科下,错误率就是字面意思)
    所以找到最优分类树结构代码如下:

    def chooseBestFeatureToSplit(dataSet):
        numFeatures = len(dataSet[0]) - 1      #the last column is used for the labels
        baseEntropy = calcShannonEnt(dataSet)
        bestInfoGain = 0.0; bestFeature = -1
        for i in range(numFeatures):        #iterate over all the features
            featList = [example[i] for example in dataSet]#create a list of all the examples of this feature
            uniqueVals = set(featList)       #get a set of unique values
            newEntropy = 0.0
            for value in uniqueVals:
                subDataSet = splitDataSet(dataSet, i, value)
                prob = len(subDataSet)/float(len(dataSet))
                newEntropy += prob * calcShannonEnt(subDataSet)     
            infoGain = baseEntropy - newEntropy     #calculate the info gain; ie reduction in entropy
            if (infoGain > bestInfoGain):       #compare this to the best gain so far
                bestInfoGain = infoGain         #if better than current best, set to best
                bestFeature = i
        return bestFeature     

    按照“寻找最大信息增益的方式”,找到对于已知类别的一批数据(训练集)的最优决策树,然后用这个树结构去分类未知数据(测试集),整体代码如下:

    #!/usr/bin/env python
    # coding=utf-8
    '''
    Created on Oct 12, 2010
    Decision Tree Source Code for Machine Learning in Action Ch. 3
    @author: Peter Harrington
    '''
    from math import log
    import operator
    
    def createDataSet():
        dataSet = [[1, 1, 'yes'],
                   [1, 1, 'yes'],
                   [1, 0, 'no'],
                   [0, 1, 'no'],
                   [0, 1, 'no']]
        labels = ['no surfacing','flippers']
        #change to discrete values
        return dataSet, labels
    
    def calcShannonEnt(dataSet):
        # 计算香侬熵
        numEntries = len(dataSet)
        labelCounts = {}
        # 存储特征的字典
        for featVec in dataSet: #the the number of unique elements and their occurance
            currentLabel = featVec[-1]
            # 取最后一个元素,即该组特征的label
            if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0
            # 如果没有,增加新key,value初始化为0
            labelCounts[currentLabel] += 1
            # 对应key的值累计
        shannonEnt = 0.0
        for key in labelCounts:
            prob = float(labelCounts[key])/numEntries
            shannonEnt -= prob * log(prob,2) #log base 2
            # shannon公式:shanonEnt =(负的)求和(i.prob*log(i.prob,2))
        return shannonEnt
    
    def splitDataSet(dataSet, axis, value):
        retDataSet = []
        for featVec in dataSet:
            if featVec[axis] == value:
                reducedFeatVec = featVec[:axis]     #chop out axis used for splitting
                reducedFeatVec.extend(featVec[axis+1:])
                # 简单的分片,除去分类特征,余下的添加到容器中
                retDataSet.append(reducedFeatVec)
        return retDataSet
    
    def chooseBestFeatureToSplit(dataSet):
        numFeatures = len(dataSet[0]) - 1      #the last column is used for the labels
        baseEntropy = calcShannonEnt(dataSet)
        bestInfoGain = 0.0; bestFeature = -1
        for i in range(numFeatures):        #iterate over all the features
            featList = [example[i] for example in dataSet]#create a list of all the examples of this feature
            uniqueVals = set(featList)       #get a set of unique values
            newEntropy = 0.0
            for value in uniqueVals:
                subDataSet = splitDataSet(dataSet, i, value)
                prob = len(subDataSet)/float(len(dataSet))
                newEntropy += prob * calcShannonEnt(subDataSet)     
            infoGain = baseEntropy - newEntropy     #calculate the info gain; ie reduction in entropy
            if (infoGain > bestInfoGain):       #compare this to the best gain so far
                bestInfoGain = infoGain         #if better than current best, set to best
                bestFeature = i
        return bestFeature                      #returns an integer
    
    def majorityCnt(classList):
        classCount={}
        for vote in classList:
            if vote not in classCount.keys(): classCount[vote] = 0
            classCount[vote] += 1
        sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
        return sortedClassCount[0][0]
    
    def createTree(dataSet,labels):
        classList = [example[-1] for example in dataSet]
        if classList.count(classList[0]) == len(classList): 
            return classList[0]#stop splitting when all of the classes are equal
        if len(dataSet[0]) == 1: #stop splitting when there are no more features in dataSet
            return majorityCnt(classList)
        bestFeat = chooseBestFeatureToSplit(dataSet)
        bestFeatLabel = labels[bestFeat]
        myTree = {bestFeatLabel:{}}
        del(labels[bestFeat])
        featValues = [example[bestFeat] for example in dataSet]
        uniqueVals = set(featValues)
        for value in uniqueVals:
            subLabels = labels[:]       #copy all of labels, so trees don't mess up existing labels
            myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)
        return myTree                            
    
    def classify(inputTree,featLabels,testVec):
        firstStr = inputTree.keys()[0]
        secondDict = inputTree[firstStr]
        featIndex = featLabels.index(firstStr)
        key = testVec[featIndex]
        valueOfFeat = secondDict[key]
        if isinstance(valueOfFeat, dict): 
            classLabel = classify(valueOfFeat, featLabels, testVec)
        else: classLabel = valueOfFeat
        return classLabel
    
    def storeTree(inputTree,filename):
        import pickle
        fw = open(filename,'w')
        pickle.dump(inputTree,fw)
        fw.close()
    
    def grabTree(filename):
        import pickle
        fr = open(filename)
        return pickle.load(fr)
    
    if __name__ == '__main__':
        (dataSet, labels) = createDataSet();
        print dataSet;print labels
        shannonEnt = calcShannonEnt(dataSet)
        print shannonEnt
        myTree = createTree(dataSet,labels )
        print 'mytree:'
        print myTree
        (dataSet, labels) = createDataSet();
        print classify(myTree,labels, [1,1])
        import treePlotter
        # treePlotter.createPlot(myTree)
        fr = open('lenses.txt')
        lenses = [inst.strip().split('	') for inst in fr.readlines()]
        lensesLabels = ['age','prescript','astigmatic','tearRate']
        lensesTree = createTree(lenses,lensesLabels)
        print lensesTree
        treePlotter.createPlot(lensesTree)
    
    

    部分地方加入了中文注释,原著的那几行英文注释很好就没有再换成中文的。
    之前没有详细看过决策树,以为它就是把分类逻辑变为树结构,多个if else,说说个人学习后,对于决策树的理解:
    1.还是觉得它就是多个if else,树结构也可以这么理解吧
    2.构建的过程或者说收敛条件是:最大信息增益(最小信息熵)
    3.优点:可读性强,逻辑简单易懂,计算步骤不超过树的深度;缺点:极易过拟合,得到的树结构泛性不强
    4.正因为过度追求最优解,导致决策树往往会过拟合,原著是通过构建以后的合并细小或相近分支,也就是“后置裁剪”,但是这样时间上有浪费,代表的是K-Fold Cross Validation,不断裁剪,评估当前的错误率,有点类似于整体求解后,再反过来找恰当的“early stop”;另一种就是著名的随机森林,系统复杂了,效果确实会好,额,随机森林具体的以后深度学习下补上。
    下面是原著利用matplolib画图的代码:

    '''
    Created on Oct 14, 2010
    
    @author: Peter Harrington
    '''
    import matplotlib.pyplot as plt
    
    decisionNode = dict(boxstyle="sawtooth", fc="0.8")
    leafNode = dict(boxstyle="round4", fc="0.8")
    arrow_args = dict(arrowstyle="<-")
    
    def getNumLeafs(myTree):
        numLeafs = 0
        firstStr = myTree.keys()[0]
        secondDict = myTree[firstStr]
        for key in secondDict.keys():
            if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes
                numLeafs += getNumLeafs(secondDict[key])
            else:   numLeafs +=1
        return numLeafs
    
    def getTreeDepth(myTree):
        maxDepth = 0
        firstStr = myTree.keys()[0]
        secondDict = myTree[firstStr]
        for key in secondDict.keys():
            if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes
                thisDepth = 1 + getTreeDepth(secondDict[key])
            else:   thisDepth = 1
            if thisDepth > maxDepth: maxDepth = thisDepth
        return maxDepth
    
    def plotNode(nodeTxt, centerPt, parentPt, nodeType):
        createPlot.ax1.annotate(nodeTxt, xy=parentPt,  xycoords='axes fraction',
                 xytext=centerPt, textcoords='axes fraction',
                 va="center", ha="center", bbox=nodeType, arrowprops=arrow_args )
    
    def plotMidText(cntrPt, parentPt, txtString):
        xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]
        yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
        createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)
    
    def plotTree(myTree, parentPt, nodeTxt):#if the first key tells you what feat was split on
        numLeafs = getNumLeafs(myTree)  #this determines the x width of this tree
        depth = getTreeDepth(myTree)
        firstStr = myTree.keys()[0]     #the text label for this node should be this
        cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)
        plotMidText(cntrPt, parentPt, nodeTxt)
        plotNode(firstStr, cntrPt, parentPt, decisionNode)
        secondDict = myTree[firstStr]
        plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD
        for key in secondDict.keys():
            if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes   
                plotTree(secondDict[key],cntrPt,str(key))        #recursion
            else:   #it's a leaf node print the leaf node
                plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
                plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
                plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
        plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD
    #if you do get a dictonary you know it's a tree, and the first element will be another dict
    
    def createPlot(inTree):
        fig = plt.figure(1, facecolor='white')
        fig.clf()
        axprops = dict(xticks=[], yticks=[])
        createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)    #no ticks
        #createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses 
        plotTree.totalW = float(getNumLeafs(inTree))
        plotTree.totalD = float(getTreeDepth(inTree))
        plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0;
        plotTree(inTree, (0.5,1.0), '')
        plt.show()
    
    #def createPlot():
    #    fig = plt.figure(1, facecolor='white')
    #    fig.clf()
    #    createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses 
    #    plotNode('a decision node', (0.5, 0.1), (0.1, 0.5), decisionNode)
    #    plotNode('a leaf node', (0.8, 0.1), (0.3, 0.8), leafNode)
    #    plt.show()
    
    def retrieveTree(i):
        listOfTrees =[{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}},
                      {'no surfacing': {0: 'no', 1: {'flippers': {0: {'head': {0: 'no', 1: 'yes'}}, 1: 'no'}}}}
                      ]
        return listOfTrees[i]
    
    #createPlot(thisTree)
  • 相关阅读:
    MySQL教程(四)—— MySQL的登录与退出
    MySQL教程(三)—— MySQL的安装与配置
    django中使用POST方法报错 URL via POST, but the URL doesn't end in a slash
    django的html模板中获取字典的值
    使用pycharm手动搭建python语言django开发环境(五) 使用日志模块打日志
    使用pycharm手动搭建python语言django开发环境(四) django中buffer类型与str类型的联合使用
    python语言 buffer类型数据的使用 'ascii' codec can't decode byte 0xe5 问题的解决
    使用pycharm手动搭建python语言django开发环境(三) 使用django的apps应用 添加应用静态文件
    使用pycharm手动搭建python语言django开发环境
    使用pycharm手动搭建python语言django开发环境(一)
  • 原文地址:https://www.cnblogs.com/zhangdebin/p/5567924.html
Copyright © 2011-2022 走看看