zoukankan      html  css  js  c++  java
  • poj 1050 To the Max

    DP+暴力

    提交地址:http://poj.org/problem?id=1050

                                                                                         To the Max
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 45915   Accepted: 24282

    Description

    Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. 
    As an example, the maximal sub-rectangle of the array: 

    0 -2 -7 0 
    9 2 -6 2 
    -4 1 -4 1 
    -1 8 0 -2 
    is in the lower left corner: 

    9 2 
    -4 1 
    -1 8 
    and has a sum of 15. 

    Input

    The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

    Output

    Output the sum of the maximal sub-rectangle.

    Sample Input

    4
    0 -2 -7 0 9 2 -6 2
    -4 1 -4  1 -1
    
    8  0 -2

    Sample Output

    15
    提议大体上就是求n*n的矩阵中的最大矩形面积,不同与以往的情况就是里边得值有可能是负的(n^3不会超时哦)
     1 #include<cstdio>
     2 #include<cstring>
     3 #include<iostream>
     4 
     5 #define N 101
     6 
     7 using namespace std;
     8 
     9 int sum[N][N];
    10 int n,x;
    11 int num=-(1<<30);
    12 
    13 int main()
    14   {
    15       scanf("%d",&n);
    16       for(int i=1;i<=n;i++)
    17         for(int j=1;j<=n;j++)
    18           {
    19               scanf("%d",&x);
    20               sum[i][j]=sum[i][j-1]+x;            //sum[i][j]表示第i行前j个数的和
    21           }
    22       for(int i=1;i<=n;i++)
    23         for(int j=i;j<=n;j++)                     //i、j表示的是举行的长度 
    24           {
    25               int t=0;
    26               for(int k=1;k<=n;k++)               //k表示举行的高度 
    27                 {
    28                     int q=sum[k][j]-sum[k][i-1];    //枚举所有长为i—j的高为k的矩形,把他当前行的i—j位提取出来 
    29                                                     //再加上它之上几行的i—j的矩形的面积,就是一个新矩形的面积
    30                                                 //本题和其他动规题一样,都是先处理小的,在由小的得到大的 
    31                     if(t>0) t+=q;                   //如果当前矩阵的大小已经<0了,那么再加上就要放弃之前的矩阵,放弃一定会更优
    32                       else    t=q;
    33                     num=max(num,t);                 //比较,取优 
    34                 }
    35           }
    36     printf("%d",num);
    37       return 0;
    38   }
    To the Max
  • 相关阅读:
    【动态规划】最长公共子序列与最长公共子串
    【图论】深入理解Dijsktra算法
    webSocket基本知识
    React的合成事件
    mobx的实现原理
    js自定义事件
    React16废弃的生命周期和新的生命周期
    正则表达式基本概念
    webpack异步加载文件的方式
    React.lazy懒加载组件
  • 原文地址:https://www.cnblogs.com/yuemo/p/5499285.html
Copyright © 2011-2022 走看看