NMS(非极大值抑制)
NMS: non maximum suppression
翻译为“非极大值抑制”,为什么不翻译成最大值抑制呢?maximum可以翻译为“最大值”,也可以翻译成“极大值”,所以翻译成极大值或者最大值一定要看这个值的含义。极大值和最大值的区别就是,极大值时局部最大值。
NMS的作用:去掉detection任务重复的检测框。
用普通话翻译一下非极大值抑制:不是局部的最大值的那些值都滚蛋
用图片来理解一下:
图片引自:https://blog.csdn.net/shuzfan/article/details/52711706#commentsedit
基于前面的网络(如RPN)能为每个框给出一个score,score越大证明框越接近期待值。如上图,两个目标分别有多个选择框,现在要去掉多余的选择框。分别在局部选出最大框,然后去掉和这个框IOU>0.7的框。
非极大值抑制嘛,就是只留下极大值的意思。只留下极大值之后,就是下面的样子了:
嗯,这个算法就是这么简单。
下面时Fast R-CNN关于NMS的源代码(python版),Faster R-CNN也是用的这段代码。
# -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- import numpy as np def py_cpu_nms(dets, thresh): """Pure Python NMS baseline.""" x1 = dets[:, 0] y1 = dets[:, 1] x2 = dets[:, 2] y2 = dets[:, 3] scores = dets[:, 4] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] keep = [] while order.size > 0: i = order[0] keep.append(i) xx1 = np.maximum(x1[i], x1[order[1:]]) yy1 = np.maximum(y1[i], y1[order[1:]]) xx2 = np.minimum(x2[i], x2[order[1:]]) yy2 = np.minimum(y2[i], y2[order[1:]]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (areas[i] + areas[order[1:]] - inter) inds = np.where(ovr <= thresh)[0] order = order[inds + 1] return keep