zoukankan      html  css  js  c++  java
  • MySQL 8.0 Server层最新架构详解

    简介: 本文基于MySQL 8.0.25源码进行分析和总结。这里MySQL Server层指的是MySQL的优化器、执行器部分。我们对MySQL的理解还建立在5.6和5.7版本的理解之上,更多的是对比PostgreSQL或者传统数据库。然而从MySQL 8.0开始,持续每三个月的迭代和重构工作,使得MySQL Server层的整体架构有了质的飞越。下面来看下MySQL最新的架构。

    image.png

    作者 | 道客
    来源 | 阿里技术公众号

    一 背景和架构

    本文基于MySQL 8.0.25源码进行分析和总结。这里MySQL Server层指的是MySQL的优化器、执行器部分。我们对MySQL的理解还建立在5.6和5.7版本的理解之上,更多的是对比PostgreSQL或者传统数据库。然而从MySQL 8.0开始,持续每三个月的迭代和重构工作,使得MySQL Server层的整体架构有了质的飞越。下面来看下MySQL最新的架构。

    image.png

    我们可以看到最新的MySQL的分层架构和其他数据库并没有太大的区别,另外值得一提的是从图中可以看出MySQL现在更多的加强InnoDB、NDB集群和RAPID(HeatWave clusters)内存集群架构的演进。下面我们就看下具体细节,我们这次不随着官方的Feature实现和重构顺序进行理解,本文更偏向于从优化器、执行器的流程角度来演进。

    二 MySQL 解析器Parser

    首先从Parser开始,官方MySQL 8.0使用Bison进行了重写,生成Parser Tree,同时Parser Tree会contextualize生成MySQL抽象语法树(Abstract Syntax Tree)。

    image.png

    MySQL抽象语法树和其他数据库有些不同,是由比较让人拗口的SELECT_LEX_UNIT/SELECT_LEX类交替构成的,然而这两个结构在最新的版本中已经重命名成标准的SELECT_LEX -> Query_block和SELECT_LEX_UNIT -> Query_expression。Query_block是代表查询块,而Query_expression是包含多个查询块的查询表达式,包括UNION AND/OR的查询块(如SELECT FROM t1 union SELECT FROM t2)或者有多Level的ORDER BY/LIMIT (如SELECT * FROM t1 ORDER BY a LIMIT 10) ORDER BY b LIMIT 5。

    例如,来看一个复杂的嵌套查询:

     (SELECT *
       FROM ttt1)
    UNION ALL
      (SELECT *
       FROM
         (SELECT *
          FROM ttt2) AS a,
         (SELECT *
          FROM ttt3
          UNION ALL SELECT *
          FROM ttt4) AS b)

    在MySQL中就可以用下面方式表达:

    image.png

    经过解析和转换后的语法树仍然建立在Query_block和Query_expression的框架下,只不过有些LEVEL的query block被消除或者合并了,这里不再详细展开。

    三 MySQL prepare/rewrite阶段

    接下来我们要经过resolve和transformation过程Query_expression::prepare->Query_block::prepare,这个过程包括(按功能分而非完全按照执行顺序):

    1 Setup and Fix

    • setup_tables:Set up table leaves in the query block based on list of tables.
    • resolve_placeholder_tables/merge_derived/setup_table_function/setup_materialized_derived:Resolve derived table, view or table function references in query block.
    • setup_natural_join_row_types:Compute and store the row types of the top-most NATURAL/USING joins.
    • setup_wild:Expand all '*' in list of expressions with the matching column references.
    • setup_base_ref_items:Set query_block's base_ref_items.
    • setup_fields:Check that all given fields exists and fill struct with current data.
    • setup_conds:Resolve WHERE condition and join conditions.
    • setup_group:Resolve and set up the GROUP BY list.
    • m_having_cond->fix_fields:Setup the HAVING clause.
    • resolve_rollup:Resolve items in SELECT list and ORDER BY list for rollup processing.
    • resolve_rollup_item:Resolve an item (and its tree) for rollup processing by replacing items matching grouped expressions with Item_rollup_group_items and updating properties (m_nullable, PROP_ROLLUP_FIELD). Also check any GROUPING function for incorrect column.
    • setup_order:Set up the ORDER BY clause.
    • resolve_limits:Resolve OFFSET and LIMIT clauses.
    • Window::setup_windows1:Set up windows after setup_order() and before setup_order_final().
    • setup_order_final:Do final setup of ORDER BY clause, after the query block is fully resolved.
    • setup_ftfuncs:Setup full-text functions after resolving HAVING.
    • resolve_rollup_wfs : Replace group by field references inside window functions with references in the presence of ROLLUP.

    2 Transformation

    • remove_redundant_subquery_clause : Permanently remove redundant parts from the query if 1) This is a subquery 2) Not normalizing a view. Removal should take place when a query involving a view is optimized, not when the view is created.
    • remove_base_options:Remove SELECT_DISTINCT options from a query block if can skip distinct.
    • resolve_subquery : Resolve predicate involving subquery, perform early unconditional subquery transformations.

      • Convert subquery predicate into semi-join, or
      • Mark the subquery for execution using materialization, or
      • Perform IN->EXISTS transformation, or
      • Perform more/less ALL/ANY -> MIN/MAX rewrite
      • Substitute trivial scalar-context subquery with its value
    • transform_scalar_subqueries_to_join_with_derived:Transform eligible scalar subqueries to derived tables.
    • flatten_subqueries:Convert semi-join subquery predicates into semi-join join nests. Convert candidate subquery predicates into semi-join join nests. This transformation is performed once in query lifetime and is irreversible.
    • apply_local_transforms :

      • delete_unused_merged_columns : If query block contains one or more merged derived tables/views, walk through lists of columns in select lists and remove unused columns.
      • simplify_joins:Convert all outer joins to inner joins if possible
      • prune_partitions:Perform partition pruning for a given table and condition.
    • push_conditions_to_derived_tables:Pushing conditions down to derived tables must be done after validity checks of grouped queries done by apply_local_transforms();
    • Window::eliminate_unused_objects:Eliminate unused window definitions, redundant sorts etc.

    这里,节省篇幅,我们只举例关注下和top_join_list相关的simple_joins这个函数的作用,对于Query_block中嵌套join的简化过程。

    image.png

    3 对比PostgreSQL

    为了更清晰的理解标准数据库的做法,我们这里引用了PostgreSQL的这三个过程:

    Parser

    下图首先Parser把SQL语句生成parse tree。

    testdb=# SELECT id, data FROM tbl_a WHERE id < 300 ORDER BY data;
    

    image.png

    Analyzer/Analyser

    下图展示了PostgreSQL的analyzer/analyser如何将parse tree通过语义分析后生成query tree。

    image.png

    Rewriter

    Rewriter会根据规则系统中的规则把query tree进行转换改写。

    sampledb=# CREATE VIEW employees_list 
    sampledb-#      AS SELECT e.id, e.name, d.name AS department 
    sampledb-#            FROM employees AS e, departments AS d WHERE e.department_id = d.id;
    

    下图的例子就是一个包含view的query tree如何展开成新的query tree。

    sampledb=# SELECT * FROM employees_list;
    

    image.png

    四 MySQL Optimize和Planning阶段

    接下来我们进入了逻辑计划生成物理计划的过程,本文还是注重于结构的解析,而不去介绍生成的细节,MySQL过去在8.0.22之前,主要依赖的结构就是JOIN和QEP_TAB。JOIN是与之对应的每个Query_block,而QEP_TAB对应的每个Query_block涉及到的具体“表”的顺序、方法和执行计划。然而在8.0.22之后,新的基于Hypergraph的优化器算法成功的抛弃了QEP_TAB结构来表达左深树的执行计划,而直接使用HyperNode/HyperEdge的图来表示执行计划。

    image.png

    举例可以看到数据结构表达的left deep tree和超图结构表达的bushy tree对应的不同计划展现:

    | -> Inner hash join (no condition)  (cost=1.40 rows=1)
        -> Table scan on R4  (cost=0.35 rows=1)
        -> Hash
            -> Inner hash join (no condition)  (cost=1.05 rows=1)
                -> Table scan on R3  (cost=0.35 rows=1)
                -> Hash
                    -> Inner hash join (no condition)  (cost=0.70 rows=1)
                        -> Table scan on R2  (cost=0.35 rows=1)
                        -> Hash
                            -> Table scan on R1  (cost=0.35 rows=1)
    
    | -> Nested loop inner join  (cost=0.55..0.55 rows=0)
        -> Nested loop inner join  (cost=0.50..0.50 rows=0)
            -> Table scan on R4  (cost=0.25..0.25 rows=1)
            -> Filter: (R4.c1 = R3.c1)  (cost=0.35..0.35 rows=0)
                -> Table scan on R3  (cost=0.25..0.25 rows=1)
        -> Nested loop inner join  (cost=0.50..0.50 rows=0)
            -> Table scan on R2  (cost=0.25..0.25 rows=1)
            -> Filter: (R2.c1 = R1.c1)  (cost=0.35..0.35 rows=0)
                -> Table scan on R1  (cost=0.25..0.25 rows=1)

    MySQL8.0.2x为了更好的兼容两种优化器,引入了新的类AccessPath,可以认为这是MySQL为了解耦执行器和不同优化器抽象出来的Plan Tree。

    image.png

    1 老优化器的入口

    老优化器仍然走JOIN::optimize来把query block转换成query execution plan (QEP)。

    这个阶段仍然做一些逻辑的重写工作,这个阶段的转换可以理解为基于cost-based优化前做准备,详细步骤如下:

    • Logical transformations

      • optimize_derived : Optimize the query expression representing a derived table/view.
      • optimize_cond : Equality/constant propagation.
      • prune_table_partitions : Partition pruning.
      • optimize_aggregated_query : COUNT(*), MIN(), MAX() constant substitution in case of implicit grouping.
      • substitute_gc : ORDER BY optimization, substitute all expressions in the WHERE condition and ORDER/GROUP lists that match generated columns (GC) expressions with GC fields, if any.
    • Perform cost-based optimization of table order and access path selection.

      • JOIN::make_join_plan() : Set up join order and initial access paths.
    • Post-join order optimization

      • substitute_for_best_equal_field : Create optimal table conditions from the where clause and the join conditions.
      • make_join_query_block : Inject outer-join guarding conditions.
      • Adjust data access methods after determining table condition (several times).
      • optimize_distinct_group_order : Optimize ORDER BY/DISTINCT.
      • optimize_fts_query : Perform FULLTEXT search before all regular searches.
      • remove_eq_conds : Removes const and eq items. Returns the new item, or nullptr if no condition.
      • replace_index_subquery/create_access_paths_for_index_subquery : See if this subquery can be evaluated with subselect_indexsubquery_engine.
      • setup_join_buffering : Check whether join cache could be used.
    • Code generation

      • alloc_qep(tables) : Create QEP_TAB array.
      • test_skip_sort : Try to optimize away sorting/distinct.
      • make_join_readinfo : Plan refinement stage: do various setup things for the executor.
      • make_tmp_tables_info : Setup temporary table usage for grouping and/or sorting.
      • push_to_engines : Push (parts of) the query execution down to the storage engines if they can provide faster execution of the query, or part of it.
      • create_access_paths : generated ACCESS_PATH.

    2 新优化器的入口

    新优化器默认不打开,必须通过set optimizer_switch="hypergraph_optimizer=on"; 来打开。主要通过FindBestQueryPlan函数来实现,逻辑如下:

    • 先判断是否属于新优化器可以支持的Query语法(CheckSupportedQuery),不支持的直接返回错误ER_HYPERGRAPH_NOT_SUPPORTED_YET。
    • 转化top_join_list变成JoinHypergraph结构。由于Hypergraph是比较独立的算法层面的实现,JoinHypergraph结构用来更好的把数据库的结构包装到Hypergraph的edges和nodes的概念上的。
    • 通过EnumerateAllConnectedPartitions实现论文中的DPhyp算法。
    • CostingReceiver类包含了过去JOIN planning的主要逻辑,包括根据cost选择相应的访问路径,根据DPhyp生成的子计划进行评估,保留cost最小的子计划。
    • 得到root_path后,接下来处理group/agg/having/sort/limit的。对于Group by操作,目前Hypergraph使用sorting first + streaming aggregation的方式。

    举例看下Plan(AccessPath)和SQL的关系:

    image.png

    最后生成Iterator执行器框架需要的Iterator执行载体,AccessPath和Iterator是一对一的关系(Access paths are a query planning structure that correspond 1:1 to iterators)。

    
    Query_expression::m_root_iterator = CreateIteratorFromAccessPath(......)
    
    unique_ptr_destroy_only<RowIterator> CreateIteratorFromAccessPath(
         THD *thd, AccessPath *path, JOIN *join, bool eligible_for_batch_mode) {
    ......
       switch (path->type) {
         case AccessPath::TABLE_SCAN: {
           const auto &param = path->table_scan();
           iterator = NewIterator<TableScanIterator>(
               thd, param.table, path->num_output_rows, examined_rows);
           break;
         }
         case AccessPath::INDEX_SCAN: {
           const auto &param = path->index_scan();
           if (param.reverse) {
             iterator = NewIterator<IndexScanIterator<true>>(
                 thd, param.table, param.idx, param.use_order, path->num_output_rows,
                 examined_rows);
           } else {
             iterator = NewIterator<IndexScanIterator<false>>(
                 thd, param.table, param.idx, param.use_order, path->num_output_rows,
                 examined_rows);
           }
           break;
         }
         case AccessPath::REF: {
    ......
    }

    3 对比PostgreSQL

    testdb=# EXPLAIN SELECT * FROM tbl_a WHERE id < 300 ORDER BY data;
                              QUERY PLAN                           
    ---------------------------------------------------------------
     Sort  (cost=182.34..183.09 rows=300 width=8)
       Sort Key: data
       ->  Seq Scan on tbl_a  (cost=0.00..170.00 rows=300 width=8)
             Filter: (id < 300)
    (4 rows)

    image.png

    五 总结

    本文主要focus在MySQL最新版本官方的源码上,重点分析了官方的重构在多阶段和各阶段结构上的变化和联系,更多的是为了让大家了解一个全新的MySQL的发展。

    原文链接

    本文为阿里云原创内容,未经允许不得转载。

  • 相关阅读:
    Apache Solr入门教程(初学者之旅)
    Codeforces 631 (Div. 2) E. Drazil Likes Heap 贪心
    Codeforces 631 (Div. 2) D. Dreamoon Likes Sequences 位运算^ 组合数 递推
    Codeforces 631 (Div. 2) C. Dreamoon Likes Coloring 思维or构造
    python中的类型转换
    MVC3.0在各个版本IIS中的部署
    get和post的区别
    Vue和React对比
    谈谈你对web标注和W3c的理解和认识
    js中的undefined 和null
  • 原文地址:https://www.cnblogs.com/yunqishequ/p/15066475.html
Copyright © 2011-2022 走看看