from keras.models import Sequential from keras.layers import Conv2D,MaxPool2D,Activation,Dropout,Flatten,Dense from keras.optimizers import Adam from keras.preprocessing.image import ImageDataGenerator,img_to_array,load_img # 定义模型 model = Sequential() model.add(Conv2D(input_shape=(150,150,3),filters=32,kernel_size=3,padding='same',activation='relu')) model.add(Conv2D(filters=32,kernel_size=3,padding='same',activation='relu')) model.add(MaxPool2D(pool_size=2, strides=2)) model.add(Conv2D(filters=64,kernel_size=3,padding='same',activation='relu')) model.add(Conv2D(filters=64,kernel_size=3,padding='same',activation='relu')) model.add(MaxPool2D(pool_size=2, strides=2)) model.add(Conv2D(filters=128,kernel_size=3,padding='same',activation='relu')) model.add(Conv2D(filters=128,kernel_size=3,padding='same',activation='relu')) model.add(MaxPool2D(pool_size=2, strides=2)) model.add(Flatten()) model.add(Dense(64,activation='relu')) model.add(Dropout(0.5)) model.add(Dense(2,activation='softmax')) # 定义优化器 adam = Adam(lr=1e-4) # 定义优化器,代价函数,训练过程中计算准确率 model.compile(optimizer=adam,loss='categorical_crossentropy',metrics=['accuracy']) #训练集图像增强 train_datagen = ImageDataGenerator( rotation_range = 40, # 随机旋转度数 width_shift_range = 0.2, # 随机水平平移 height_shift_range = 0.2,# 随机竖直平移 rescale = 1/255, # 数据归一化 shear_range = 20, # 随机错切变换 zoom_range = 0.2, # 随机放大 horizontal_flip = True, # 水平翻转 fill_mode = 'nearest', # 填充方式 ) #测试集数据增强 test_datagen = ImageDataGenerator( rescale = 1/255, # 数据归一化 ) batch_size = 32 # 生成训练数据 train_generator = train_datagen.flow_from_directory( 'image/train', target_size=(150,150), batch_size=batch_size, ) # 测试数据 test_generator = test_datagen.flow_from_directory( 'image/test', target_size=(150,150), batch_size=batch_size, ) #打印训练集分类 train_generator.class_indices#{'cat': 0, 'dog': 1} #分类每个文件夹表示一个类别,可以用flow_from_directory()+fit_generator() #如果是回归问题,要先准备好样本和标签,同时放进fit里面 model.fit_generator(train_generator, steps_per_epoch=len(train_generator), epochs=30, validation_data=test_generator, validation_steps=len(test_generator))