微软残差神经网络ResNet(可以叠至1024层),最新物体检测方法R-FCN,Google的神经网络机器翻译,用神经网络组装起来的决策机器“Alphago”等
更多案例讲解:
图像识别,物体检测,neural style图像风格变换,生成文本,文本分类,机器翻译等
课程大纲:
第1课 从线性分类器到BP神经网络
1.图像线性分类器softmax、linearSVM与损失函数
2.神经网络与空间非线性切分
3.BP算法与随机梯度下降
4.神经网络的欠/过拟合
第2课 计算机读懂世界的“眼睛”:CNN
1.卷积神经网络层级结构详解
2.卷积神经网络的卷积(filter)与可视化理解
3.典型卷积神经网络结构(AlexNet, VGG, GoogLeNet, ResNet)讲解
4.简单手写数字识别CNN示例
第3课 论如何正确训练得到“听话”的CNN
1.参数初始化,超参数优化
2.过拟合与正则化(dropout/随机失活)
3.Batch Normalization与稳定训练
4.快速网络与残差,构建千层的ResNet
第4课 迁移学习:探索更多的图像应用
1.神经网络与物体定位
2.基于深度学习的目标检测算法(Fast/Fater RCNN, R-FCN...)
3.秒变文艺:neural style将照片转换成大师佳作
第5课 学以致用:caffe库与图像应用案例
1.便捷的caffe与几种使用方法
2.使用caffe在自己的训练集上训练图像识别系统
3.使用caffe做目标检测简单示例
第6课 教计算机读懂词:词嵌入
1.自然语言处理与词向量表示
2.word2vec与CBOM、Skip-Gram、GloVe
3.word2vec工具简介:word2vec,gensim
4.词嵌入与文本分类等常见应用
第7课 博闻强志的循环神经网络
1.带有记忆功能的RNN
2.强大的变种LSTM与GRU
第8课 玩转文本的RNN
1.rnn模仿风格“写诗”与“写代码”
2.让你的图片能说话:注意力模型与图像描述生成
3.神奇的神经网络翻译系统
第9课 让李世石忧伤的怪物Alphago
1.Alphago与它的2个“大脑”
2.正确的组装模式:神经网络全家桶
3.强大的决策者:蒙特卡洛搜索树
第10课:主流深度学习框架示例
1.回顾DL利器Caffe的使用
2.谷歌亲儿子TensorFlow常见网络搭建与可视化
3.高效高速的MxNet与使用案例