zoukankan      html  css  js  c++  java
  • Codeforces 474D Flowers (线性dp 找规律)


    D. Flowers
    time limit per test:1.5 seconds
    memory limit per test:256 megabytes

    We saw the little game Marmot made for Mole's lunch. Now it's Marmot's dinner time and, as we all know, Marmot eats flowers. At every dinner he eats some red and white flowers. Therefore a dinner can be represented as a sequence of several flowers, some of them white and some of them red.

    But, for a dinner to be tasty, there is a rule: Marmot wants to eat white flowers only in groups of size k.

    Now Marmot wonders in how many ways he can eat between a and b flowers. As the number of ways could be very large, print it modulo 1000000007 (109 + 7).

    Input

    Input contains several test cases.

    The first line contains two integers t and k (1 ≤ t, k ≤ 105), where t represents the number of test cases.

    The next t lines contain two integers ai and bi (1 ≤ ai ≤ bi ≤ 105), describing the i-th test.

    Output

    Print t lines to the standard output. The i-th line should contain the number of ways in which Marmot can eat between ai and bi flowers at dinner modulo 1000000007 (109 + 7).

    Sample test(s)
    Input
    3 2
    1 3
    2 3
    4 4
    
    Output
    6
    5
    5
    
    Note
    • For K = 2 and length 1 Marmot can eat (R).
    • For K = 2 and length 2 Marmot can eat (RR) and (WW).
    • For K = 2 and length 3 Marmot can eat (RRR), (RWW) and (WWR).
    • For K = 2 and length 4 Marmot can eat, for example, (WWWW) or (RWWR), but for example he can't eat (WWWR).


    题目连接:http://codeforces.com/problemset/problem/474/D

    题目大意:一个东西爱吃花,有两种颜色红R和白W。他吃白花每次都一组一组吃,一组是连续在一起的k个,问在花的个数从ai到bi范围里。他总共同拥有多少种吃法

    题目分析:dp[i]表示长度为i是他吃花的方案数。初始时dp[i] = 1 (0 <= i < k) i小于k时显然仅仅有一种

    当i>=k时,我们dp[i]能够是dp[i - 1]加上一朵红花,或者dp[i - k]加上k朵白花,dp[i] = dp[i - 1] + dp[i - k]

    然后求出dp数组的前缀和,查询时O(1)


    #include <cstdio>
    #include <cstring>
    #define ll long long
    int const MAX = 1e5 + 5;
    int const MOD = 1e9 + 7;
    int a[MAX];
    ll dp[MAX], sum[MAX];
    
    int main()
    {
        int t, k;
        scanf("%d %d", &t, &k);
        for(int i = 0; i < k; i++)
            dp[i] = 1;
        for(int i = k; i < MAX; i++)
            dp[i] = (dp[i - 1] % MOD + dp[i - k] % MOD) % MOD;
        sum[1] = dp[1];
        for(int i = 2; i < MAX; i++)
            sum[i] = (sum[i - 1] % MOD + dp[i] % MOD) % MOD;
        while(t --)
        {
            int a, b;
            scanf("%d %d", &a, &b);
            printf("%lld
    ", (MOD + sum[b] - sum[a - 1]) % MOD);
        }
    }


  • 相关阅读:
    Java 开发者不容错过的 12 种高效工具
    10个基于 Ruby on Rails 构建的顶级站点
    当 ITOA 遇上 OneAlert,企业可以至少每年节省 3600 小时!
    年度十佳 DevOps 博客文章(前篇)
    如何使用 Java8 实现观察者模式?(下)
    企业处理事件风暴的 2 种最佳管理方法
    移动开发:初学 iOS-UIViewController 心得
    如何使用 Java8 实现观察者模式?(上)
    世界级的安卓测试开发流!
    PHP全栈学习笔记19
  • 原文地址:https://www.cnblogs.com/yutingliuyl/p/6941981.html
Copyright © 2011-2022 走看看