zoukankan      html  css  js  c++  java
  • Boring Sum(hdu4961)hash

    Boring Sum

    Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
    Total Submission(s): 814 Accepted Submission(s): 390


    Problem Description
    Number theory is interesting, while this problem is boring.

    Here is the problem. Given an integer sequence a1, a2, …, an, let S(i) = {j|1<=j<i, and aj is a multiple of ai}. If S(i) is not empty, let f(i) be the maximum integer in S(i); otherwise, f(i) = i. Now we define bi as af(i). Similarly, let T(i) = {j|i<j<=n, and aj is a multiple of ai}. If T(i) is not empty, let g(i) be the minimum integer in T(i); otherwise, g(i) = i. Now we define ci as ag(i). The boring sum of this sequence is defined as b1 * c1 + b2 * c2 + … + bn * cn.

    Given an integer sequence, your task is to calculate its boring sum.
     
    Input
    The input contains multiple test cases.

    Each case consists of two lines. The first line contains an integer n (1<=n<=100000). The second line contains n integers a1, a2, …, an (1<= ai<=100000).

    The input is terminated by n = 0.
     
    Output
    Output the answer in a line.
     
    Sample Input
    5
    1 4 2 3 9
    0
     
    Sample Output
    136
     
    Hint
    In the sample, b1=1, c1=4, b2=4, c2=4, b3=4, c3=2, b4=3, c4=9, b5=9, c5=9, so b1 * c1 + b2 * c2 + … + b5 * c5 = 136.
     
     
    题意:

    给出n个数的数列a,bi的取值为在1 <= j < i之间如果存在aj % ai == 0,

    则取最大下标的值赋给bi,如果不存在,则bi = ai;ci的取值为在i < j <= n之间

    如果存在aj % ai == 0,则取最小下标值赋给bi,如果不存在,则ci = ai。

    求b1 * c1 + b2 * c2 + ... + bn * cn的和。

    思路:

    如果直接暴力的话一定会超时,所以我们可以开一个vis数组来记录每一个值

    所对应的最大的下标是多少。即每查找ai,分解出ai的质因子,更新vis数组

    #include<stdio.h>
    #include<string.h>
    #define ll __int64
    #define maxn 100000+5
    #define mem(x) memset(x,0,sizeof(x))
    
    
    ll a[maxn],b[maxn],c[maxn],sum,n;
    ll vis[maxn];//a[i]的下标i
    
    int main()
    {
        ll i,j,k,temp;
        while(scanf("%I64d",&n),n)
        {
            mem(b);
            mem(c);
            mem(vis);
            for(i=1;i<=n;i++)
                scanf("%I64d",&a[i]);
            vis[a[1]]=1;
            for(i=2;i<=n;i++)
            {
                for(j=1;j*j<=a[i];j++)
                {
                    if(a[i]%j!=0) continue;//取质因子
    
    //                printf("i=%I64d  j=%I64d  a[i]=%I64d  ",i,j,a[i]);
    
                    if(vis[j]!=0)//
                    {
                        b[vis[j]]=a[i];
    //                    printf("b[vis[j]]=%I64d  vis[j]=%I64d  ",b[vis[j]],vis[j]);
                        vis[j]=0;
                    }
                    temp=a[i]/j;
     //               printf("temp=%I64d  ",temp);
                    if(vis[temp]!=0)//更新
                    {
                        b[vis[temp]]=a[i];
      //                  printf("b[vis[temp]]=%I64d  vis[temp]=%I64d",b[vis[temp]],vis[temp]);
                        vis[temp]=0;
                    }
       //             printf("
    ");
                }
                vis[a[i]]=i;
            }
            for(i=1;i<=n;i++)
                if(b[i]==0)
                    b[i]=a[i];
            mem(vis);
            vis[a[n]]=n;
    
            for(i=n-1;i>=1;i--)
            {
                for(j=1;j*j<=a[i];j++)
                {
                    if(a[i]%j!=0) continue;//取质因子
                    if(vis[j]!=0)//
                    {
                        c[vis[j]]=a[i];
                        vis[j]=0;
                    }
                    temp=a[i]/j;
                    if(vis[temp]!=0)//更新
                    {
                        c[vis[temp]]=a[i];
                        vis[temp]=0;
                    }
                }
                vis[a[i]]=i;
            }
            for(i=1;i<=n;i++)
                if(c[i]==0)
                    c[i]=a[i];
      //      for(i=1;i<=n;i++)
      //      printf("b:%I64d	c:%I64d
    ",b[i],c[i]);
            sum=0;
            for(i=1;i<=n;i++)
                sum+=b[i]*c[i];
            printf("%I64d
    ",sum);
        }
        return 0;
    }
     
  • 相关阅读:
    Prim算法以及Kruskal算法
    PAT甲级考前整理(2019年3月备考)之三,持续更新中.....
    PAT甲级考前整理(2019年3月备考)之一
    PAT甲级考前整理(2019年3月备考)之二,持续更新中.....
    linux下挂载U盘
    opencv2已有的情况下,安装opencv3以及对应的opencv_contrib
    二维数组和二级指针做函数参数的问题
    ubuntu14.04下 python2.7怎么链接到安装在指定文件夹的opencv3
    使用opencv的nonfree模块
    PaddlePaddle开源平台的应用
  • 原文地址:https://www.cnblogs.com/yuyixingkong/p/3930859.html
Copyright © 2011-2022 走看看