代码来源于:https://www.cnblogs.com/huangyc/p/10327209.html ,本人只是简介学习
1、 贝叶斯.py
import numpy as np from word_utils import * class NaiveBayesBase(object): def __init__(self): pass def fit(self, trainMatrix, trainCategory): ''' 朴素贝叶斯分类器训练函数,求:p(Ci),基于词汇表的p(w|Ci) Args: trainMatrix : 训练矩阵,即向量化表示后的文档(词条集合) trainCategory : 文档中每个词条的列表标注 Return: p0Vect : 属于0类别的概率向量(p(w1|C0),p(w2|C0),...,p(wn|C0)) p1Vect : 属于1类别的概率向量(p(w1|C1),p(w2|C1),...,p(wn|C1)) pAbusive : 属于1类别文档的概率 ''' numTrainDocs = len(trainMatrix) # 长度为词汇表长度 numWords = len(trainMatrix[0]) # p(ci) self.pAbusive = sum(trainCategory) / float(numTrainDocs) # 由于后期要计算p(w|Ci)=p(w1|Ci)*p(w2|Ci)*...*p(wn|Ci),若wj未出现,则p(wj|Ci)=0,因此p(w|Ci)=0,这样显然是不对的 # 故在初始化时,将所有词的出现数初始化为1,分母即出现词条总数初始化为2 p0Num = np.ones(numWords) p1Num = np.ones(numWords) p0Denom = 2.0 p1Denom = 2.0 for i in range(numTrainDocs): if trainCategory[i] == 1: p1Num += trainMatrix[i] p1Denom += sum(trainMatrix[i]) else: p0Num += trainMatrix[i] p0Denom += sum(trainMatrix[i]) # p(wi | c1) # 为了避免下溢出(当所有的p都很小时,再相乘会得到0.0,使用log则会避免得到0.0) self.p1Vect = np.log(p1Num / p1Denom) # p(wi | c2) self.p0Vect = np.log(p0Num / p0Denom) return self def predict(self, testX): ''' 朴素贝叶斯分类器 Args: testX : 待分类的文档向量(已转换成array) p0Vect : p(w|C0) p1Vect : p(w|C1) pAbusive : p(C1) Return: 1 : 为侮辱性文档 (基于当前文档的p(w|C1)*p(C1)=log(基于当前文档的p(w|C1))+log(p(C1))) 0 : 非侮辱性文档 (基于当前文档的p(w|C0)*p(C0)=log(基于当前文档的p(w|C0))+log(p(C0))) ''' p1 = np.sum(testX * self.p1Vect) + np.log(self.pAbusive) p0 = np.sum(testX * self.p0Vect) + np.log(1 - self.pAbusive) if p1 > p0: return 1 else: return 0 def loadDataSet(): '''数据加载函数。这里是一个小例子''' postingList = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'], ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'], ['stop', 'posting', 'stupid', 'worthless', 'garbage'], ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'], ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']] classVec = [0, 1, 0, 1, 0, 1] # 1代表侮辱性文字,0代表正常言论,代表上面6个样本的类别 return postingList, classVec def checkNB(): '''测试''' listPosts, listClasses = loadDataSet() myVocabList = createVocabList(listPosts) trainMat = [] for postDoc in listPosts: trainMat.append(setOfWord2Vec(myVocabList, postDoc)) nb = NaiveBayesBase() nb.fit(np.array(trainMat), np.array(listClasses)) testEntry1 = ['love', 'my', 'dalmation'] thisDoc = np.array(setOfWord2Vec(myVocabList, testEntry1)) print(testEntry1, 'classified as:', nb.predict(thisDoc)) testEntry2 = ['stupid', 'garbage'] thisDoc2 = np.array(setOfWord2Vec(myVocabList, testEntry2)) print(testEntry2, 'classified as:', nb.predict(thisDoc2)) if __name__ == "__main__": checkNB()
2、word_utils.py
def createVocabList(dataSet): ''' 创建所有文档中出现的不重复词汇列表 Args: dataSet: 所有文档 Return: 包含所有文档的不重复词列表,即词汇表 ''' vocabSet = set([]) # 创建两个集合的并集 for document in dataSet: vocabSet = vocabSet | set(document) return list(vocabSet) # 词袋模型(bag-of-words model):词在文档中出现的次数 def bagOfWords2Vec(vocabList, inputSet): ''' 依据词汇表,将输入文本转化成词袋模型词向量 Args: vocabList: 词汇表 inputSet: 当前输入文档 Return: returnVec: 转换成词向量的文档 例子: vocabList = ['I', 'love', 'python', 'and', 'machine', 'learning'] inputset = ['python', 'machine', 'learning', 'python', 'machine'] returnVec = [0, 0, 2, 0, 2, 1] 长度与词汇表一样长,出现了的位置为1,未出现为0,如果词汇表中无该单词则print ''' returnVec = [0] * len(vocabList) for word in inputSet: if word in vocabList: returnVec[vocabList.index(word)] += 1 else: print("the word: %s is not in my vocabulary!" % word) return returnVec # 词集模型(set-of-words model):词在文档中是否存在,存在为1,不存在为0 def setOfWord2Vec(vocabList, inputSet): ''' 依据词汇表,将输入文本转化成词集模型词向量 Args: vocabList: 词汇表 inputSet: 当前输入文档 Return: returnVec: 转换成词向量的文档 例子: vocabList = ['I', 'love', 'python', 'and', 'machine', 'learning'] inputset = ['python', 'machine', 'learning'] returnVec = [0, 0, 1, 0, 1, 1] 长度与词汇表一样长,出现了的位置为1,未出现为0,如果词汇表中无该单词则print ''' returnVec = [0] * len(vocabList) for word in inputSet: if word in vocabList: returnVec[vocabList.index(word)] = 1 else: print("the word: %s is not in my vocabulary!" % word) return returnVec