zoukankan      html  css  js  c++  java
  • 机器学习之贝叶斯垃圾邮件分类

    代码来源于:https://www.cnblogs.com/huangyc/p/10327209.html  ,本人只是简介学习

    1、 贝叶斯.py

    import numpy as np
    from word_utils import *
    
    
    
    class NaiveBayesBase(object):
    
        def __init__(self):
            pass
    
    
        def fit(self, trainMatrix, trainCategory):
            '''
            朴素贝叶斯分类器训练函数,求:p(Ci),基于词汇表的p(w|Ci)
            Args:
                trainMatrix : 训练矩阵,即向量化表示后的文档(词条集合)
                trainCategory : 文档中每个词条的列表标注
            Return:
                p0Vect : 属于0类别的概率向量(p(w1|C0),p(w2|C0),...,p(wn|C0))
                p1Vect : 属于1类别的概率向量(p(w1|C1),p(w2|C1),...,p(wn|C1))
                pAbusive : 属于1类别文档的概率
            '''
            numTrainDocs = len(trainMatrix)
            # 长度为词汇表长度
            numWords = len(trainMatrix[0])
            # p(ci)
            self.pAbusive = sum(trainCategory) / float(numTrainDocs)
            # 由于后期要计算p(w|Ci)=p(w1|Ci)*p(w2|Ci)*...*p(wn|Ci),若wj未出现,则p(wj|Ci)=0,因此p(w|Ci)=0,这样显然是不对的
            # 故在初始化时,将所有词的出现数初始化为1,分母即出现词条总数初始化为2
            p0Num = np.ones(numWords)
            p1Num = np.ones(numWords)
            p0Denom = 2.0
            p1Denom = 2.0
            for i in range(numTrainDocs):
                if trainCategory[i] == 1:
                    p1Num += trainMatrix[i]
                    p1Denom += sum(trainMatrix[i])
                else:
                    p0Num += trainMatrix[i]
                    p0Denom += sum(trainMatrix[i])
            # p(wi | c1)
            # 为了避免下溢出(当所有的p都很小时,再相乘会得到0.0,使用log则会避免得到0.0)
            self.p1Vect = np.log(p1Num / p1Denom)
            # p(wi | c2)
            self.p0Vect = np.log(p0Num / p0Denom)
            return self
    
    
        def predict(self, testX):
            '''
            朴素贝叶斯分类器
            Args:
                testX : 待分类的文档向量(已转换成array)
                p0Vect : p(w|C0)
                p1Vect : p(w|C1)
                pAbusive : p(C1)
            Return:
                1 : 为侮辱性文档 (基于当前文档的p(w|C1)*p(C1)=log(基于当前文档的p(w|C1))+log(p(C1)))
                0 : 非侮辱性文档 (基于当前文档的p(w|C0)*p(C0)=log(基于当前文档的p(w|C0))+log(p(C0)))
            '''
    
            p1 = np.sum(testX * self.p1Vect) + np.log(self.pAbusive)
            p0 = np.sum(testX * self.p0Vect) + np.log(1 - self.pAbusive)
            if p1 > p0:
                return 1
            else:
                return 0
    
    def loadDataSet():
        '''数据加载函数。这里是一个小例子'''
        postingList = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
                       ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                       ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                       ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                       ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                       ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
        classVec = [0, 1, 0, 1, 0, 1]  # 1代表侮辱性文字,0代表正常言论,代表上面6个样本的类别
        return postingList, classVec
    
    
    def checkNB():
        '''测试'''
        listPosts, listClasses = loadDataSet()
        myVocabList = createVocabList(listPosts)
        trainMat = []
        for postDoc in listPosts:
            trainMat.append(setOfWord2Vec(myVocabList, postDoc))
    
        nb = NaiveBayesBase()
        nb.fit(np.array(trainMat), np.array(listClasses))
    
        testEntry1 = ['love', 'my', 'dalmation']
        thisDoc = np.array(setOfWord2Vec(myVocabList, testEntry1))
        print(testEntry1, 'classified as:', nb.predict(thisDoc))
    
        testEntry2 = ['stupid', 'garbage']
        thisDoc2 = np.array(setOfWord2Vec(myVocabList, testEntry2))
        print(testEntry2, 'classified as:', nb.predict(thisDoc2))
    
    
    if __name__ == "__main__":
        checkNB()
    View Code

    2、word_utils.py

    def createVocabList(dataSet):
        '''
        创建所有文档中出现的不重复词汇列表
        Args:
            dataSet: 所有文档
        Return:
            包含所有文档的不重复词列表,即词汇表
        '''
        vocabSet = set([])
        # 创建两个集合的并集
        for document in dataSet:
            vocabSet = vocabSet | set(document)
        return list(vocabSet)
    
    
    # 词袋模型(bag-of-words model):词在文档中出现的次数
    def bagOfWords2Vec(vocabList, inputSet):
        '''
        依据词汇表,将输入文本转化成词袋模型词向量
        Args:
            vocabList: 词汇表
            inputSet: 当前输入文档
        Return:
            returnVec: 转换成词向量的文档
        例子:
            vocabList = ['I', 'love', 'python', 'and', 'machine', 'learning']
            inputset = ['python', 'machine', 'learning', 'python', 'machine']
            returnVec = [0, 0, 2, 0, 2, 1]
            长度与词汇表一样长,出现了的位置为1,未出现为0,如果词汇表中无该单词则print
        '''
        returnVec = [0] * len(vocabList)
        for word in inputSet:
            if word in vocabList:
                returnVec[vocabList.index(word)] += 1
            else:
                print("the word: %s is not in my vocabulary!" % word)
            return returnVec
    
    
    # 词集模型(set-of-words model):词在文档中是否存在,存在为1,不存在为0
    def setOfWord2Vec(vocabList, inputSet):
        '''
        依据词汇表,将输入文本转化成词集模型词向量
        Args:
            vocabList: 词汇表
            inputSet: 当前输入文档
        Return:
            returnVec: 转换成词向量的文档
        例子:
            vocabList = ['I', 'love', 'python', 'and', 'machine', 'learning']
            inputset = ['python', 'machine', 'learning']
            returnVec = [0, 0, 1, 0, 1, 1]
            长度与词汇表一样长,出现了的位置为1,未出现为0,如果词汇表中无该单词则print
        '''
        returnVec = [0] * len(vocabList)
        for word in inputSet:
            if word in vocabList:
                returnVec[vocabList.index(word)] = 1
            else:
                print("the word: %s is not in my vocabulary!" % word)
        return returnVec
    View Code
  • 相关阅读:
    如何把方法(函数)当参数传递
    致加西亚的信 摘录
    算法:C#数组去除重复元素算法研究
    [转帖]SQL SERVER 2005 安全设置
    [转].NET学习网站收集
    C#你真的懂了吗 啥叫引用2
    比IETEST更好用的浏览器兼容性测试软件[绿色]
    [转帖]使用asp.net访问Oracle的方法汇总
    影响力密码 信任你自己
    [转]自动刷新页面的实现方法总结
  • 原文地址:https://www.cnblogs.com/ywjfx/p/11045395.html
Copyright © 2011-2022 走看看