zoukankan      html  css  js  c++  java
  • 深度学习之加载VGG19模型获取特征图

    1、加载VGG19获取图片特征图

    # coding = utf-8
    import tensorflow as tf
    import numpy as np
    import matplotlib.pyplot as plt
    import os
    import scipy.io
    import scipy.misc
    
    
    def _conv_layer(input,weights,bias):
        conv = tf.nn.conv2d(input,tf.constant(weights),strides=(1,1,1,1),padding="SAME")
        return tf.nn.bias_add(conv,bias)
    def _pool_layer(input):
        return tf.nn.max_pool(input,ksize=(1,2,2,1),strides=(1,2,2,1),padding="SAME")
    def preprocess(image,mean_pixel):
        '''简单预处理,全部图片减去平均值'''
        return image - mean_pixel
    def unprocess(img,mean_pixel):
        return img + mean_pixel
    def imread(path):
        return scipy.misc.imread(path).astype(np.float)
    def imsave(path,img):
        img = np.clip(img,0,255).astype(np.uint8)
        scipy.misc.imsave(path,img)
    def net(data_path,input_image):
        """
        读取VGG模型参数,搭建VGG网络
        :param data_path: VGG模型文件位置
        :param input_image: 输入测试图像
        :return:
        """
        layers = (
            'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2','pool1',
            'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
            'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3',
            'relu3_3',  'conv3_4', 'relu3_4','pool3',
            'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3',
            'relu4_3', 'conv4_4', 'relu4_4', 'pool4',
            'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3',
            'relu5_3', 'conv5_4', 'relu5_4'
        )
        data = scipy.io.loadmat(data_path)
        mean = data['normalization'][0][0][0]
        mean_pixel = np.mean(mean,axis=(0,1))
        weights = data['layers'][0]
        net = {}
        current = input_image
        for i, name in enumerate(layers):
            kind =name[:4]
            if kind == 'conv':
                kernels,bias = weights[i][0][0][0][0]
                kernels = np.transpose(kernels,(1,0,2,3))
                bias = bias.reshape(-1)
                current = _conv_layer(current,kernels,bias)
            elif kind == 'relu':
                current = tf.nn.relu(current)
            elif kind == 'pool':
                current = _pool_layer(current)
            net[name] = current
        assert len(net) == len(layers)
        return net,mean_pixel,layers
    
    if __name__ == '__main__':
        VGG_PATH = "./one/imagenet-vgg-verydeep-19.mat"
        IMG_PATH = './one/3.jpg'
        input_image =imread(IMG_PATH)
        shape = (1, input_image.shape[0], input_image.shape[1], input_image.shape[2])
        with tf.Session() as sess:
            image = tf.placeholder('float', shape=shape)
            nets, mean_pixel, all_layers= net(VGG_PATH, image)
            input_image_pre=np.array([preprocess(input_image,mean_pixel)])
            layers = all_layers
    
            for i , layer in enumerate(layers):
                print("[%d/%d] %s" % (i+1,len(layers),layers))
                features = nets[layer].eval(feed_dict={image:input_image_pre})
                print("Type of 'feature' is ",type(features))
                print("Shape of 'features' is  %s" % (features.shape,))
                if 1:
                    plt.figure(i+1,figsize=(10,5))
                    plt.matshow(features[0,:,:,0],cmap=plt.cm.gray,fignum=i+1)
                    plt.title(""+layer)
                    plt.colorbar()
                    plt.show()
  • 相关阅读:
    小白_开始学Scrapy__原理
    python zip()函数
    前端工程精粹(一):静态资源版本更新与缓存
    HTML 5 History API的”前生今世”
    常见的几个js疑难点,match,charAt,charCodeAt,map,search
    前端安全须知
    Html5游戏框架createJs组件--EaselJS(二)绘图类graphics
    Html5游戏框架createJs组件--EaselJS(一)
    github基本用法
    jquery ajax中事件的执行顺序
  • 原文地址:https://www.cnblogs.com/ywjfx/p/11127943.html
Copyright © 2011-2022 走看看