zoukankan      html  css  js  c++  java
  • opencv之dlib库人脸识别

    基础知识

    python知识:
      import os,shutil
      shutil.rmtree("C:\Users\yangwj\Desktop\test") #删除目录
      os.remove("C:\Users\yangwj\Desktop\replay_pid28076.log") # 删除文件
      os.path.isfile() # 判断是否为文件
      os.listdir() # 列出路径下的目录

    1、从摄像头获取人脸图片

    import dlib         # 人脸处理的库 Dlib
    import numpy as np  # 数据处理的库 Numpy
    import cv2          # 图像处理的库 OpenCv
    
    import os           # 读写文件
    import shutil       # 读写文件
    
    # Dlib 正向人脸检测器 / frontal face detector
    detector = dlib.get_frontal_face_detector()
    
    # Dlib 68 点特征预测器 / 68 points features predictor
    predictor = dlib.shape_predictor('data/data_dlib/shape_predictor_68_face_landmarks.dat')
    
    # OpenCv 调用摄像头 use camera
    cap = cv2.VideoCapture(0)
    
    # 设置视频参数 set camera
    cap.set(3, 480)
    
    # 人脸截图的计数器 the counter for screen shoot
    cnt_ss = 0
    
    # 存储人脸的文件夹 the folder to save faces
    current_face_dir = ""
    
    # 保存 faces images 的路径 the directory to save images of faces
    path_photos_from_camera = "data/data_faces_from_camera/"
    
    
    # 新建保存人脸图像文件和数据CSV文件夹
    # mkdir for saving photos and csv
    def pre_work_mkdir():
    
        # 新建文件夹 / make folders to save faces images and csv
        if os.path.isdir(path_photos_from_camera):
            pass
        else:
            os.mkdir(path_photos_from_camera)
    
    
    pre_work_mkdir()
    
    
    ##### optional/可选, 默认关闭 #####
    # 删除之前存的人脸数据文件夹
    # delete the old data of faces
    def pre_work_del_old_face_folders():
        # 删除之前存的人脸数据文件夹
        # 删除 "/data_faces_from_camera/person_x/"...
        folders_rd = os.listdir(path_photos_from_camera)
        for i in range(len(folders_rd)):
            shutil.rmtree(path_photos_from_camera+folders_rd[i])
    
        if os.path.isfile("data/features_all.csv"):
            os.remove("data/features_all.csv")
    
    # 这里在每次程序录入之前, 删掉之前存的人脸数据
    # 如果这里打开,每次进行人脸录入的时候都会删掉之前的人脸图像文件夹 person_1/,person_2/,person_3/...
    # If enable this function, it will delete all the old data in dir person_1/,person_2/,/person_3/...
    # pre_work_del_old_face_folders()
    ##################################
    
    
    # 如果有之前录入的人脸 / if the old folders exists
    # 在之前 person_x 的序号按照 person_x+1 开始录入 / start from person_x+1
    if os.listdir(path_photos_from_camera):
        # 获取已录入的最后一个人脸序号 / get the num of latest person
        person_list = os.listdir(path_photos_from_camera)
        person_num_list = []
        for person in person_list:
            person_num_list.append(int(person.split('_')[-1]))
        person_cnt = max(person_num_list)
    
    # 如果第一次存储或者没有之前录入的人脸, 按照 person_1 开始录入
    # start from person_1
    else:
        person_cnt = 0
    
    # 之后用来控制是否保存图像的 flag / the flag to control if save
    save_flag = 1
    
    # 之后用来检查是否先按 'n' 再按 's' / the flag to check if press 'n' before 's'
    press_n_flag = 0
    
    while cap.isOpened():
        flag, img_rd = cap.read()
        # print(img_rd.shape)
        # It should be 480 height * 640 width
    
        kk = cv2.waitKey(1)
    
        img_gray = cv2.cvtColor(img_rd, cv2.COLOR_RGB2GRAY)
        
        # 人脸数 faces
        faces = detector(img_gray, 0)
    
        # 待会要写的字体 / font to write
        font = cv2.FONT_HERSHEY_COMPLEX
    
        # 按下 'n' 新建存储人脸的文件夹 / press 'n' to create the folders for saving faces
        if kk == ord('n'):
            person_cnt += 1
            print("请输入名字")
            person_name = input()
            current_face_dir = path_photos_from_camera + "person_" + str(person_cnt)
            os.makedirs(current_face_dir)
            print('
    ')
            print("新建的人脸文件夹 / Create folders: ", current_face_dir)
    
            cnt_ss = 0              # 将人脸计数器清零 / clear the cnt of faces
            press_n_flag = 1        # 已经按下 'n' / have pressed 'n'
    
        # 检测到人脸 / if face detected
        if len(faces) != 0:
            # 矩形框 / show the rectangle box
            for k, d in enumerate(faces):
                # 计算矩形大小
                # we need to compute the width and height of the box
                # (x,y), (宽度width, 高度height)
                pos_start = tuple([d.left(), d.top()])
                pos_end = tuple([d.right(), d.bottom()])
    
                # 计算矩形框大小 / compute the size of rectangle box
                height = (d.bottom() - d.top())
                width = (d.right() - d.left())
    
                hh = int(height/2)
                ww = int(width/2)
    
                # 设置颜色 / the color of rectangle of faces detected
                color_rectangle = (255, 255, 255)
    
                # 判断人脸矩形框是否超出 480x640
                if (d.right()+ww) > 640 or (d.bottom()+hh > 480) or (d.left()-ww < 0) or (d.top()-hh < 0):
                    cv2.putText(img_rd, "OUT OF RANGE", (20, 300), font, 0.8, (0, 0, 255), 1, cv2.LINE_AA)
                    color_rectangle = (0, 0, 255)
                    save_flag = 0
                    if kk == ord('s'):
                        print("请调整位置 / Please adjust your position")
                else:
                    color_rectangle = (255, 255, 255)
                    save_flag = 1
    
                # TODO 可以考虑不减 ,看效果---->结果是只有脸部图像
                cv2.rectangle(img_rd,
                              tuple([d.left() - ww, d.top() - hh]),
                              tuple([d.right() + ww, d.bottom() + hh]),
                              color_rectangle, 2)
    
                # 根据人脸大小生成空的图像 / create blank image according to the size of face detected
                im_blank = np.zeros((int(height*2), width*2, 3), np.uint8)
    
                if save_flag:
                    # 按下 's' 保存摄像头中的人脸到本地 / press 's' to save faces into local images
                    if kk == ord('s'):
                        # 检查有没有先按'n'新建文件夹 / check if you have pressed 'n'
                        if press_n_flag:
                            cnt_ss += 1
                            for ii in range(height*2):
                                for jj in range(width*2):
                                    # 将人脸图像填充到空图像中
                                    im_blank[ii][jj] = img_rd[d.top()-hh + ii][d.left()-ww + jj]
                            cv2.imwrite(current_face_dir + "/img_face_" + str(cnt_ss) + ".jpg", im_blank)
                            print("写入本地 / Save into:", str(current_face_dir) + "/img_face_" + str(cnt_ss) + ".jpg")
                        else:
                            print("请在按 'S' 之前先按 'N' 来建文件夹 / Please press 'N' before 'S'")
    
        # 显示人脸数 / show the numbers of faces detected
        cv2.putText(img_rd, "Faces: " + str(len(faces)), (20, 100), font, 0.8, (0, 255, 0), 1, cv2.LINE_AA)
    
        # 添加说明 / add some statements
        cv2.putText(img_rd, "Face Register", (20, 40), font, 1, (0, 0, 0), 1, cv2.LINE_AA)
        cv2.putText(img_rd, "N: New face folder", (20, 350), font, 0.8, (0, 0, 0), 1, cv2.LINE_AA)
        cv2.putText(img_rd, "S: Save current face", (20, 400), font, 0.8, (0, 0, 0), 1, cv2.LINE_AA)
        cv2.putText(img_rd, "Q: Quit", (20, 450), font, 0.8, (0, 0, 0), 1, cv2.LINE_AA)
    
        # 按下 'q' 键退出 / press 'q' to exit
        if kk == ord('q'):
            break
    
        # 如果需要摄像头窗口大小可调 / uncomment this line if you want the camera window is resizeable
        # cv2.namedWindow("camera", 0)
    
        cv2.imshow("camera", img_rd)
    
    # 释放摄像头 / release camera
    cap.release()
    
    cv2.destroyAllWindows()
    View Code

    2、将获取的人脸图片转为csv文件

    import cv2
    import os
    import dlib
    from skimage import io
    import csv
    import numpy as np
    
    # 要读取人脸图像文件的路径q
    path_images_from_camera = "data/data_faces_from_camera/"
    
    # Dlib 正向人脸检测器
    detector = dlib.get_frontal_face_detector()
    
    # Dlpredictorib 人脸预测器
    predictor = dlib.shape_predictor("data/data_dlib/shape_predictor_68_face_landmarks.dat")
    
    # Dlib 人脸识别模型
    # Face recognition model, the object maps human faces into 128D vectors
    #  shape_predictor_68_face_landmarks.dat
    face_rec = dlib.face_recognition_model_v1("data/data_dlib/dlib_face_recognition_resnet_model_v1.dat")
    
    
    # 返回单张图像的 128D 特征
    def return_128d_features(path_img):
        img_rd = io.imread(path_img)
        img_gray = cv2.cvtColor(img_rd, cv2.COLOR_BGR2RGB)
        faces = detector(img_gray, 1)
    
        print("%-40s %-20s" % ("检测到人脸的图像 / image with faces detected:", path_img), '
    ')
    
        # 因为有可能截下来的人脸再去,检测不出检测来人脸了
        # 所以要确保是 检测到人脸的人脸图像 拿去算特征
        if len(faces) != 0:
            shape = predictor(img_gray, faces[0])
            face_descriptor = face_rec.compute_face_descriptor(img_gray, shape)
            print("faces")
        else:
            face_descriptor = 0
            print("no face")
    
        return face_descriptor
    
    
    # 将文件夹中照片特征提取出来, 写入 CSV
    def return_features_mean_personX(path_faces_personX):
        features_list_personX = []
        photos_list = os.listdir(path_faces_personX)
        if photos_list:
            for i in range(len(photos_list)):
                # 调用return_128d_features()得到128d特征
                print("%-40s %-20s" % ("正在读的人脸图像 / image to read:", path_faces_personX + "/" + photos_list[i]))
                features_128d = return_128d_features(path_faces_personX + "/" + photos_list[i])
                #  print(features_128d)
                # 遇到没有检测出人脸的图片跳过
                if features_128d == 0:
                    continue
                else:
                    features_list_personX.append(features_128d)
        else:
            print("文件夹内图像文件为空 / Warning: No images in " + path_faces_personX + '/', '
    ')
    
        # 计算 128D 特征的均值
        # personX 的 N 张图像 x 128D -> 1 x 128D
        if features_list_personX:
            features_mean_personX = np.array(features_list_personX).mean(axis=0)
        else:
            features_mean_personX = '0'
    
        return features_mean_personX
    
    
    # 获取已录入的最后一个人脸序号 / get the num of latest person
    person_list = os.listdir("data/data_faces_from_camera/")
    person_num_list = []
    for person in person_list:
        person_num_list.append(int(person.split('_')[-1]))
    person_cnt = max(person_num_list)
    
    with open("data/features_all.csv", "w", newline="") as csvfile:
        writer = csv.writer(csvfile)
        for person in range(person_cnt):
            # Get the mean/average features of face/personX, it will be a list with a length of 128D
            print(path_images_from_camera + "person_"+str(person+1))
            features_mean_personX = return_features_mean_personX(path_images_from_camera + "person_"+str(person+1))
            writer.writerow(features_mean_personX)
            print("特征均值 / The mean of features:", list(features_mean_personX))
            print('
    ')
        print("所有录入人脸数据存入 / Save all the features of faces registered into: data/features_all.csv")
    View Code

    3、人脸识别

    import dlib          # 人脸处理的库 Dlib
    import numpy as np   # 数据处理的库 numpy
    import cv2           # 图像处理的库 OpenCv
    import pandas as pd  # 数据处理的库 Pandas
    
    # 人脸识别模型,提取128D的特征矢量
    # face recognition model, the object maps human faces into 128D vectors
    # Refer this tutorial: http://dlib.net/python/index.html#dlib.face_recognition_model_v1
    facerec = dlib.face_recognition_model_v1("data/data_dlib/dlib_face_recognition_resnet_model_v1.dat")
    
    
    # 计算两个128D向量间的欧式距离
    # compute the e-distance between two 128D features
    def return_euclidean_distance(feature_1, feature_2):
        feature_1 = np.array(feature_1)
        feature_2 = np.array(feature_2)
        dist = np.sqrt(np.sum(np.square(feature_1 - feature_2)))
        return dist
    
    
    # 处理存放所有人脸特征的 csv
    path_features_known_csv = "data/features_all.csv"
    csv_rd = pd.read_csv(path_features_known_csv, header=None)
    
    # 用来存放所有录入人脸特征的数组
    # the array to save the features of faces in the database
    features_known_arr = []
    
    # 读取已知人脸数据
    # print known faces
    for i in range(csv_rd.shape[0]):
        features_someone_arr = []
        for j in range(0, len(csv_rd.ix[i, :])):
            features_someone_arr.append(csv_rd.ix[i, :][j])
        features_known_arr.append(features_someone_arr)
    print("Faces in Database:", len(features_known_arr))
    
    # Dlib 检测器和预测器
    # The detector and predictor will be used
    detector = dlib.get_frontal_face_detector()
    predictor = dlib.shape_predictor('data/data_dlib/shape_predictor_68_face_landmarks.dat')
    
    # 创建 cv2 摄像头对象
    # cv2.VideoCapture(0) to use the default camera of PC,
    # and you can use local video name by use cv2.VideoCapture(filename)
    cap = cv2.VideoCapture(0)
    
    # cap.set(propId, value)
    # 设置视频参数,propId 设置的视频参数,value 设置的参数值
    cap.set(3, 480)
    
    # cap.isOpened() 返回 true/false 检查初始化是否成功
    # when the camera is open
    while cap.isOpened():
    
        flag, img_rd = cap.read()
        kk = cv2.waitKey(1)
    
        # 取灰度
        img_gray = cv2.cvtColor(img_rd, cv2.COLOR_RGB2GRAY)
    
        # 人脸数 faces
        faces = detector(img_gray, 0)
    
        # 待会要写的字体 font to write later
        font = cv2.FONT_HERSHEY_COMPLEX
    
        # 存储当前摄像头中捕获到的所有人脸的坐标/名字
        # the list to save the positions and names of current faces captured
        pos_namelist = []
        name_namelist = []
    
        # 按下 q 键退出
        # press 'q' to exit
        if kk == ord('q'):
            break
        else:
            # 检测到人脸 when face detected
            if len(faces) != 0:
                # 获取当前捕获到的图像的所有人脸的特征,存储到 features_cap_arr
                # get the features captured and save into features_cap_arr
                features_cap_arr = []
                for i in range(len(faces)):
                    shape = predictor(img_rd, faces[i])
                    features_cap_arr.append(facerec.compute_face_descriptor(img_rd, shape))
    
                # 遍历捕获到的图像中所有的人脸
                # traversal all the faces in the database
                for k in range(len(faces)):
                    print("##### camera person", k+1, "#####")
                    # 让人名跟随在矩形框的下方
                    # 确定人名的位置坐标
                    # 先默认所有人不认识,是 unknown
                    # set the default names of faces with "unknown"
                    name_namelist.append("unknown")
    
                    # 每个捕获人脸的名字坐标 the positions of faces captured
                    pos_namelist.append(tuple([faces[k].left(), int(faces[k].bottom() + (faces[k].bottom() - faces[k].top())/4)]))
    
                    # 对于某张人脸,遍历所有存储的人脸特征
                    # for every faces detected, compare the faces in the database
                    e_distance_list = []
                    for i in range(len(features_known_arr)):
                        # 如果 person_X 数据不为空
                        if str(features_known_arr[i][0]) != '0.0':
                            print("with person", str(i + 1), "the e distance: ", end='')
                            e_distance_tmp = return_euclidean_distance(features_cap_arr[k], features_known_arr[i])
                            print(e_distance_tmp)
                            e_distance_list.append(e_distance_tmp)
                        else:
                            # 空数据 person_X
                            e_distance_list.append(999999999)
                    # Find the one with minimum e distance
                    similar_person_num = e_distance_list.index(min(e_distance_list))
                    print("Minimum e distance with person", int(similar_person_num)+1)
    
                    if min(e_distance_list) < 0.4:
                        # 在这里修改 person_1, person_2 ... 的名字
                        # 可以在这里改称 Jack, Tom and others
                        # Here you can modify the names shown on the camera
                        name_namelist[k] = "Person "+str(int(similar_person_num)+1)
                        print("May be person "+str(int(similar_person_num)+1))
                    else:
                        print("Unknown person")
    
                    # 矩形框
                    # draw rectangle
                    for kk, d in enumerate(faces):
                        # 绘制矩形框
                        cv2.rectangle(img_rd, tuple([d.left(), d.top()]), tuple([d.right(), d.bottom()]), (0, 255, 255), 2)
                    print('
    ')
    
                # 在人脸框下面写人脸名字
                # write names under rectangle
                for i in range(len(faces)):
                    cv2.putText(img_rd, name_namelist[i], pos_namelist[i], font, 0.8, (0, 255, 255), 1, cv2.LINE_AA)
    
        print("Faces in camera now:", name_namelist, "
    ")
    
        cv2.putText(img_rd, "Press 'q': Quit", (20, 450), font, 0.8, (84, 255, 159), 1, cv2.LINE_AA)
        cv2.putText(img_rd, "Face Recognition", (20, 40), font, 1, (0, 0, 0), 1, cv2.LINE_AA)
        cv2.putText(img_rd, "Faces: " + str(len(faces)), (20, 100), font, 1, (0, 0, 255), 1, cv2.LINE_AA)
    
        # 窗口显示 show with opencv
        cv2.imshow("camera", img_rd)
    
    # 释放摄像头 release camera
    cap.release()
    
    # 删除建立的窗口 delete all the windows
    cv2.destroyAllWindows()
    View Code

    完毕!

    声明:代码是github以为博主的,本人只是拿着学习人脸识别,为了尊重博主,贴出其代码地址:https://github.com/coneypo/Dlib_face_recognition_from_camera

  • 相关阅读:
    C#新功能--命名参数与可选参数
    C#新功能--命名参数
    初识SqlLite ---.net连接数据库
    混合模式程序集是针对“v2.0.50727”版的运行时生成的,在没有配置其他信息的情况下,无法在 4.0 运行时中加载该...
    看到他我一下子就悟了-- 泛型(2)
    ExtJS4中设置tabpanel的tab高度问题
    java学习1-环境搭建
    oracle获取clob调优
    oracle job定时执行存储过程
    【转】【真正福利】成为专业程序员路上用到的各种优秀资料、神器及框架
  • 原文地址:https://www.cnblogs.com/ywjfx/p/11400092.html
Copyright © 2011-2022 走看看