zoukankan      html  css  js  c++  java
  • 2021寒假(9)

    任务:

      继续TensorFlow的学习:卷积神经网络

    问题:       

       由报错位置可知是参数的问题,‘wc2’设置有误,卷积的参数应该是[3,3,64,128],而不是[3,3,64,64]

       该方法的使用发生了改变,需要改成错误提示中的形式

     

     源代码:

    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    
    # 卷积层参数和全连接层参数
    n_input = 784
    n_output = 10
    weights = {
        'wc1': tf.Variable(tf.random_normal([3, 3, 1, 64], stddev=0.1)),  # 3 3 1 64 h,w.输入深度,得出的特征图的个数
        'wc2': tf.Variable(tf.random_normal([3, 3, 64, 128], stddev=0.1)),  # 64:输入深度  128:输出深度
        'wd1': tf.Variable(tf.random_normal([7 * 7 * 128, 1024], stddev=0.1)),
        'wd2': tf.Variable(tf.random_normal([1024, n_output], stddev=0.1)),
    }
    
    biases = {
        'bc1': tf.Variable(tf.random_normal([64], stddev=0.1)),
        'bc2': tf.Variable(tf.random_normal([128], stddev=0.1)),
        'bd1': tf.Variable(tf.random_normal([1024], stddev=0.1)),
        'bd2': tf.Variable(tf.random_normal([n_output], stddev=0.1)),
    
    }
    
    
    # 特征图计算
    # 转化成向量
    # 卷积+池化操作
    def conv_basic(_input, _w, _b, _keepratio):
        _input_r = tf.reshape(_input, shape=[-1, 28, 28, 1])
        _conv1 = tf.nn.conv2d(_input_r, _w['wc1'], strides=[1, 1, 1, 1], padding='SAME')
        _conv1 = tf.nn.relu(tf.nn.bias_add(_conv1, _b['bc1']))
        _pool1 = tf.nn.max_pool(_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
        _pool_dr1 = tf.nn.dropout(_pool1, _keepratio)
    
        _conv2 = tf.nn.conv2d(_pool_dr1, _w['wc2'], strides=[1, 1, 1, 1], padding='SAME')
        _conv2 = tf.nn.relu(tf.nn.bias_add(_conv2, _b['bc2']))
        _pool2 = tf.nn.max_pool(_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
        _pool_dr2 = tf.nn.dropout(_pool2, _keepratio)
    
        _dense1 = tf.reshape(_pool_dr2, [-1, _w['wd1'].get_shape().as_list()[0]])
        _fc1 = tf.nn.relu(tf.add(tf.matmul(_dense1, _w['wd1']), _b['bd1']))
        _fc_dr1 = tf.nn.dropout(_fc1, _keepratio)
    
        _out = tf.add(tf.matmul(_fc_dr1, _w['wd2']), _b['bd2'])
        out = {'input_r': _input_r, 'conv1': _conv1, 'pool1': _pool1, 'pool1_dr1': _pool_dr1,
               'conv2': _conv2, 'pool2': _pool2, 'pool_dr2': _pool_dr2, 'dense1': _dense1, 'fc1': _fc1,
               'fc_dr1': _fc_dr1, 'out': _out}
        return out
    print('CNN READY')
    x = tf.placeholder(tf.float32, [None, n_input])
    y = tf.placeholder(tf.float32, [None, n_output])
    keepratio = tf.placeholder(tf.float32)
    
    _pred = conv_basic(x, weights, biases, keepratio)['out']
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=_pred, labels=y))
    optm = tf.train.AdadeltaOptimizer(learning_rate=0.001).minimize(cost)
    _corr = tf.equal(tf.arg_max(_pred, 1), tf.arg_max(y, 1))
    accr = tf.reduce_mean(tf.cast(_corr, tf.float32))
    init = tf.global_variables_initializer()
    
    print('GRAPH READY')
    
    mnist = input_data.read_data_sets('data/', one_hot=True)
    init = tf.global_variables_initializer()
    # 加载数据
    sess = tf.Session()
    sess.run(init)
    
    training_epochs = 15
    batch_size = 16
    display_step = 1
    for epoch in range(training_epochs):
        avg_cost = 0.
        total_batch = 10
    
        for i in range(total_batch):
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)
            sess.run(optm, feed_dict={x: batch_xs, y: batch_ys, keepratio: 0.7})
            avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keepratio: 1.}) / total_batch
    
        if epoch % display_step == 0:
            print("Epoch: %03d/%03d cost: %.9f" % (epoch, training_epochs, avg_cost))
            train_acc = sess.run(accr, feed_dict={x: batch_xs, y: batch_ys, keepratio: 1.})
            print(" Training accuracy: %.3f" % (train_acc))
    print("OPTIMIZATION FINISHED")
    View Code

    参考资料:

    https://blog.csdn.net/qq_36447181/article/details/80279802

  • 相关阅读:
    flex
    导航守卫 -vue
    H5 History
    JSX -react
    插槽slot -vue
    js 模拟鼠标绘制方块
    js 模拟滚动条
    js 实现简易留言板功能
    js 实现端口列表话
    js 为数组编写该方法;indexOf
  • 原文地址:https://www.cnblogs.com/ywqtro/p/14254268.html
Copyright © 2011-2022 走看看