zoukankan      html  css  js  c++  java
  • zoj 3822 Domination (可能性DP)

    Domination

    Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge

    Edward is the headmaster of Marjar University. He is enthusiastic about chess and often plays chess with his friends. What's more, he bought a large decorative chessboard with N rows and Mcolumns.

    Every day after work, Edward will place a chess piece on a random empty cell. A few days later, he found the chessboard was dominated by the chess pieces. That means there is at least one chess piece in every row. Also, there is at least one chess piece in every column.

    "That's interesting!" Edward said. He wants to know the expectation number of days to make an empty chessboard of N × M dominated. Please write a program to help him.

    Input

    There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

    There are only two integers N and M (1 <= NM <= 50).

    Output

    For each test case, output the expectation number of days.

    Any solution with a relative or absolute error of at most 10-8 will be accepted.

    Sample Input

    2
    1 3
    2 2
    

    Sample Output

    3.000000000000
    2.666666666667

    题意:向一个N*M的棋盘里随机放棋子,每天往一个格子里放一个。求每一行每一列都有棋子覆盖的天数。

    思路:开一个三维数组,dp[i][j][k]:有i行j列被k个棋子覆盖的概率。

    则dp[i+1][j][k+1]=dp[i][j][k]*(n-i)*j/(n*m-k);      

    //添加一个棋子,多覆盖一行

    dp[i][j+1][k+1]=dp[i][j][k]*i*(m-j)/(n*m-k);        

    //添加一个棋子,多覆盖一列

    dp[i+1][j+1][k+1]=dp[i][j][k]*(n-i)*(m-j)/(n*m-k);  

    //添加一个棋子,多覆盖一行及一列

    dp[i][j][k+1]=dp[i][j][k]*(i*j-k)/(n*m-k);    

    //添加一个棋子,行、列数没有添加

    则ans=dp[n][m][k]*k,(k=0...n*m). //当i==n&&j==m时特殊处理,最后一项去掉。

    易知dp[0][0][0]=1;

    #include<stdio.h>
    #include<math.h>
    #include<string.h>
    #include<stdlib.h>
    #include<algorithm>
    #include<iostream>
    using namespace std;
    #define N 55
    #define LL __int64
    const int inf=0x1f1f1f1f;
    const double eps=1e-10;
    double dp[N][N][N*N];
    int n,m;
    void inti()
    {
        int i,j,k;
        for(i=0;i<=n;i++)
        {
            for(j=0;j<=m;j++)
            {
                for(k=0;k<=n*m;k++)
                    dp[i][j][k]=0;
            }
        }
    }
    int main()
    {
        int i,j,k,T;
        scanf("%d",&T);
        while(T--)
        {
            scanf("%d%d",&n,&m);
            inti();
            dp[0][0][0]=1;
            int tt=n*m;
            for(i=1;i<=n;i++)
            {
                for(j=1;j<=m;j++)
                {
                    for(k=0;k<=n*m;k++)
                    {
                        if(i==n&&j==m)
                            dp[i][j][k]=(dp[i-1][j][k-1]*(n-i+1)*j+dp[i][j-1][k-1]*i*(m-j+1)+dp[i-1][j-1][k-1]*(n-i+1)*(m-j+1))/(tt-k+1);
                        else
                            dp[i][j][k]=(dp[i-1][j][k-1]*(n-i+1)*j+dp[i][j-1][k-1]*i*(m-j+1)+dp[i-1][j-1][k-1]*(n-i+1)*(m-j+1)+dp[i][j][k-1]*(i*j-k+1))/(tt-k+1);
                    }
                }
            }
            double ans=0;
            for(i=0;i<=tt;i++)
                ans+=dp[n][m][i]*i;
            printf("%.9f
    ",ans);
        }
        return 0;
    }



  • 相关阅读:
    32-3题:LeetCode103. Binary Tree Zigzag Level Order Traversal锯齿形层次遍历/之字形打印二叉树
    32-1题:不分行从上到下打印二叉树/BFS/deque/queue
    第31题:LeetCode946. Validate Stack Sequences验证栈的序列
    第30题:LeetCode155. Min Stack最小栈
    第29题:LeetCode54:Spiral Matrix螺旋矩阵
    第28题:leetcode101:Symmetric Tree对称的二叉树
    第27题:Leetcode226: Invert Binary Tree反转二叉树
    第26题:LeetCode572:Subtree of Another Tree另一个树的子树
    第25题:合并两个排序的链表
    第24题:反转链表
  • 原文地址:https://www.cnblogs.com/yxwkf/p/4555426.html
Copyright © 2011-2022 走看看