zoukankan      html  css  js  c++  java
  • HDU 2227 Find the nondecreasing subsequences(DP)

    Problem Description
    How many nondecreasing subsequences can you find in the sequence S = {s1, s2, s3, ...., sn} ?

    For example, we assume that S = {1, 2, 3}, and you can find seven nondecreasing subsequences, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}.

     

    Input
    The input consists of multiple test cases. Each case begins with a line containing a positive integer n that is the length of the sequence S, the next line contains n integers {s1, s2, s3, ...., sn}, 1 <= n <= 100000, 0 <= si <= 2^31.
     

    Output
    For each test case, output one line containing the number of nondecreasing subsequences you can find from the sequence S, the answer should % 1000000007.
     

    Sample Input
    3 1 2 3
     

    Sample Output
    7
     
    题意:问你不降子序列的个数。

    一看n达到了1e5的级别。就知道得nlogn算法。

    然而想到了一个mp的迭代可是每次迭代都得log复杂度太高。所以树状数组+离散化搞。

    题解:设dp[i]为前i个而且以i结尾的的不降子序列个数。

    我们知道前面凡是小于等于a[i]的都能够到dp[i],所以dp[i]+=dp[j](a[j]<=a[i]&&j<i).
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<vector>
    #include<string>
    #include<iostream>
    #include<queue>
    #include<cmath>
    #include<map>
    #include<stack>
    #include<bitset>
    using namespace std;
    #define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i )
    #define REP( i , n ) for ( int i = 0 ; i < n ; ++ i )
    #define CLEAR( a , x ) memset ( a , x , sizeof a )
    typedef long long LL;
    typedef pair<int,int>pil;
    const int INF = 0x3f3f3f3f;
    const int MOD=1e9+7;
    const int maxn=1e5+10;
    int a[maxn],n,b[maxn+100];
    LL dp[maxn],c[maxn+100];
    int lowbit(int x)
    {
        return x&(-x);
    }
    void update(int x,LL val)
    {
        while(x<maxn)
        {
            c[x]=(c[x]+val)%MOD;
            x+=lowbit(x);
        }
    }
    LL query(int x)
    {
        LL sum=0;
        while(x>0)
        {
            sum=(sum+c[x])%MOD;
            x-=lowbit(x);
        }
        return sum;
    }
    int main()
    {
        while(~scanf("%d",&n))
        {
            int cnt=1;
            CLEAR(c,0);
            REPF(i,1,n)
            {
               scanf("%d",&a[i]);
               b[cnt++]=a[i];
            }
            sort(b+1,b+cnt);
            cnt=unique(b+1,b+cnt)-(b+1);
            for(int i=1;i<=n;i++)
                dp[i]=1;
            LL ans=0;
            for(int i=1;i<=n;i++)
            {
                int x=lower_bound(b+1,b+1+cnt,a[i])-b;
                dp[i]=(dp[i]+query(x))%MOD;
                update(x,dp[i]);
                ans=(ans+dp[i])%MOD;
            }
            printf("%I64d
    ",ans);
        }
        return 0;
    }
    
    /*
    
    */
    


    版权声明:本文博主原创文章。博客,未经同意不得转载。

  • 相关阅读:
    cube.js 上下文实践的一些说明
    sitespeed.io 开源web 性能监控&&优化工具集
    sideway/joi js 强大的data schma 校验框架
    cube.js 最新版本的一些特性
    cube.js 支持的类型以及格式化
    cube.js 多租户模式使用一个说明
    airbyte 基于singer 扩展的EL 平台
    cube.js dimensions 的一些说明
    cube.js measures 的一些说明
    cube.js 上下文变量
  • 原文地址:https://www.cnblogs.com/yxwkf/p/4776176.html
Copyright © 2011-2022 走看看