zoukankan      html  css  js  c++  java
  • (hdu step 7.1.5)Maple trees(凸包的最小半径寻找掩护轮)

    称号:

    Maple trees

    Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 177 Accepted Submission(s): 63
     
    Problem Description
    There are a lot of trees in HDU. Kiki want to surround all the trees with the minimal required length of the rope . As follow, 

    To make this problem more simple, consider all the trees are circles in a plate. The diameter of all the trees are the same (the diameter of a tree is 1 unit). Kiki can calculate the minimal length of the rope , because it's so easy for this smart girl.
    But we don't have a rope to surround the trees. Instead, we only have some circle rings of different radius. Now I want to know the minimal required radius of the circle ring. And I don't want to ask her this problem, because she is busy preparing for the examination.
    As a smart ACMer, can you help me ?
     
    Input
    The input contains one or more data sets. At first line of each input data set is number of trees in this data set n (1 <= n <= 100), it is followed by n coordinates of the trees. Each coordinate is a pair of integers, and each integer is in [-1000, 1000], it means the position of a tree’s center. Each pair is separated by blank.
    Zero at line for number of trees terminates the input for your program.
     
    Output
    Minimal required radius of the circle ring I have to choose. The precision should be 10^-2.
     
    Sample Input
    2
    1 0
    -1 0
    0
     
    Sample Output
    1.50
     
    Author
    zjt
     
     
    Recommend
    lcy
     


    题目分析:

                 求凸包的最小覆盖圆的半径。事实上就是在求完凸包以后再求一下最小覆盖圆即可了。

    这道题须要用到下面的一些知识:

    1、关于钝角三角形,假设c是斜边,那么必定有a^2 + b^2 < c^2的证明。



    2、由三角形的三个顶点求一个三角形的面积。

    已知三角形△A1A2A3的顶点坐标Ai ( xi , yi ) ( i =1, 2, 3) 。该三角形的面积为:

      S =  ( (x2 - x1) * (y3 - y1) - (x3 - x1) * (y2 - y1) ) / 2 ;

      △A1A2A3 边界构成逆时针回路时取+ , 顺时针时取 -。

      另外在求解的过程中。不须要考虑点的输入顺序是顺时针还是逆时针,相除后就抵消了。


    3、

     凸包+最小圆覆盖
     枚举随意3点找其最小覆盖圆
    (当为钝角三角形时不是外接圆,而是以其最长边为直径的圆)。
     当为外接圆时,半径公式为r=abc/4s;(推导为例如以下:
     由正弦定理,a/sinA=b/sinB=c/sinC=2R,得sinA=a/(2R),
     又三角形面积公式S=(bcsinA)/2,所以S=(abc)/(4R),故R=(abc)/(4S).


    这道题还须要注意的是:

    1、在使用完graham求最小凸包以后。尽量让这个凸包闭合。即p[n] = p[0]。



    代码例如以下:

    #include <iostream>
    #include <cstdio>
    #include <cmath>
    #include <algorithm>
    
    using namespace std;
    
    const double epsi = 1e-8;
    const double pi = acos(-1.0);
    const int maxn = 101;
    
    
    struct PPoint{//结构体尽量不要定义成Point这样的,容易和C/C++本身中的变量同名
    	double x;
    	double y;
    
    	PPoint(double _x = 0,double _y = 0):x(_x),y(_y){
    
    	}
    
    	PPoint operator - (const PPoint& op2) const{
    		return PPoint(x - op2.x,y - op2.y);
    	}
    
    	double operator^(const PPoint &op2)const{
    		return x*op2.y - y*op2.x;
    	}
    };
    
    
    inline int sign(const double &x){
    	if(x > epsi){
    		return 1;
    	}
    
    	if(x < -epsi){
    		return -1;
    	}
    
    	return 0;
    }
    
    inline double sqr(const double &x){
    	return  x*x;
    }
    
    
    inline double mul(const PPoint& p0,const PPoint& p1,const PPoint& p2){
    	return (p1 - p0)^(p2 - p0);
    }
    
    
    inline double dis2(const PPoint &p0,const PPoint &p1){
    	return sqr(p0.x - p1.x) + sqr(p0.y - p1.y);
    }
    
    inline double dis(const PPoint& p0,const PPoint& p1){
    	return sqrt(dis2(p0,p1));
    }
    
    int n;
    PPoint p[maxn];
    PPoint convex_hull_p0;
    
    
    inline bool convex_hull_cmp(const PPoint& a,const PPoint& b){
    	return sign(mul(convex_hull_p0,a,b)>0)|| (sign(mul(convex_hull_p0,a,b)) == 0 && dis2(convex_hull_p0,a) < dis2(convex_hull_p0,b));
    }
    
    int convex_hull(PPoint* a,int n,PPoint* b){
    	int i;
    	for(i = 1 ; i < n ; ++i){
    		if(sign(a[i].x - a[0].x) < 0 || (sign(a[i].x - a[0].x) == 0 && sign(a[i].y - a[0].y) < 0)){
    			swap(a[i],a[0]);
    		}
    	}
    
    	convex_hull_p0 = a[0];//这两行代码不要顺序调换了..否则会WA
    	sort(a,a+n,convex_hull_cmp);
    
    	b[0] = a[0];
    	b[1] = a[1];
    	int newn = 2;
    	for(i = 2 ; i < n ; ++i){
    		while(newn > 1 && sign(mul(b[newn-1],b[newn-2],a[i])) >= 0){
    			newn--;
    		}
    
    		b[newn++] = a[i];
    	}
    
    	return newn;
    }
    
    
    /**
     * 有一个三角形的三个点来计算这个三角形的面积
     */
    double crossProd(PPoint A, PPoint B, PPoint C) {
        return (B.x-A.x)*(C.y-A.y) - (B.y-A.y)*(C.x-A.x);
    }
    
    
    
    int main(){
    	while(scanf("%d",&n)!=EOF,n){
    		int i;
    		for(i = 0 ; i < n ; ++i){
    			scanf("%lf %lf",&p[i].x,&p[i].y);
    		}
    
    		/**
    		 * 处理节点数仅仅有1、2的情况
    		 */
    		if(n == 1){
    			printf("0.50
    ");
    			continue;
    		}
    		if(n == 2){
    			printf("%.2lf
    ",dis(p[0],p[1])/2 + 0.5);
    			continue;
    		}
    
    		/**
    		 * 当结点数>=3时,用graham算法来求最小凸包
    		 */
    		n = convex_hull(p,n,p);
    		p[n] = p[0];//记得要收尾相接,否则可能会出错
    
    		int j;
    		int k;
    
    		double maxr = -1;//用于求最小覆盖圆的半径
    		double r;
    		/**
    		 * 枚举凸包中的随意三个点.
    		 * 假设这三个点形成的外接圆的半径最大,
    		 * 那么这个就是我们所要找的凸包的最小覆盖圆
    		 */
    		for(i = 0 ; i < n ; ++i){
    			for(j = i+1 ; j < n ; ++j){
    				for(k = j+1 ; k <= n ; ++k){//注意,这里的k是 <= n
    					double a = dis(p[i],p[j]);
    					double b = dis(p[i],p[k]);
    					double c = dis(p[j],p[k]);
    
    					//假设这三个点所形成的是钝角三角形
    					if(a*a+b*b < c*c || a*a+c*c < b*b || b*b+c*c < a*a){
    						r = max(max(a,b),c)/2;//那么这时候的半径等于最长边的一半
    					}else{//假设是直角三角形||锐角三角形
    						double s = fabs(crossProd(p[i],p[j],p[k]))/2;//由定理1求得面积
    						r = a*b*c/(4*s);//三角形的外接圆公式
    					}
    
    					if(maxr < r){//假设眼下存储的最大半径<当前外接圆的半径
    						maxr = r;//则更新眼下的最大半径
    					}
    				}
    			}
    		}
    		printf("%.2lf
    ",maxr + 0.5);//输出凸包的最小覆盖圆的最大半径
    	}
    
    	return 0;
    }
    













    版权声明:本文博主原创文章,博客,未经同意不得转载。

  • 相关阅读:
    DDR的前世与今生(二)
    DDR的前世与今生(一)
    层叠设计与串扰控制
    层叠设计流程及信号回流与参考平面
    布线层数规划
    [转]PCIe接口管脚说明
    [转]UDP主要丢包原因及具体问题分析
    [转]a10 pcie dma应用简单介绍
    [转]Altera Arria10 FPGA PCIe Avalon-MM DMA设计
    [转]Altium Designer 差分线、等长线
  • 原文地址:https://www.cnblogs.com/yxwkf/p/4798469.html
Copyright © 2011-2022 走看看