zoukankan      html  css  js  c++  java
  • 泛型Binary Search Tree实现,And和STL map比较的经营业绩

    问题叙述性说明:

    1.binary search tree它是一种二进制树的。对于key值。比当前节点左孩子少大于右子。

     2.binary search tree不是自平衡树。所以,当插入数据不是非常随机时候,性能会接近O(N)。N是树中节点数目;

     3.理想状态下。时间复杂度是O(lgN), N是树中节点的数目;

    4.以下给出一个简单的实现,并比較其和STL map的性能。一样的操作,大约耗时为STL map 的2/3。


    代码例如以下:

    #ifndef _BINARY_SEARCH_TREE_H_
    #define _BINARY_SEARCH_TREE_H_
    
    #include <functional>
    #include <algorithm>
    #include <iostream>
    #include <map>
    
    #include "windows.h"
    
    
    template<class T, class V, class Cmp = std::less<T> > 
    class BinarySearchTree
    {
    public:
    
    	// node struct
    	typedef struct tagBSNode
    	{
    		T    key;
    		V    value;
    		tagBSNode*  leftNode;
    		tagBSNode*  rightNode;
    
    		tagBSNode():key(), value(),
    			        leftNode(0),
    					rightNode(0)
    		{
    
    		}
    
    		tagBSNode( const T& _key, const V& _value ):key(_key), 
    			                                        value(_value),
    													leftNode(0),
    													rightNode(0)
    		{
    
    		}
    
    	}BSTNode, *pBSTNode;
    
    
    	/*
    	* Constructor
    	*
    	*/
    	BinarySearchTree():m_root(0), m_size(0)
    	{
    
    	}
    
    	/*
    	* Copy constructor
    	*
    	*/
    	BinarySearchTree( const BinarySearchTree& rhs )
    	{
    		m_root = Clone( rhs.m_root );
    		m_size = rhs.m_size;
    	}
    
    	/*
    	* Destructor
    	*
    	*/
    	~BinarySearchTree()
    	{
    		Clear();
    	}
    
    	/*
    	* assignment operator overload
    	*
    	*/
    	BinarySearchTree& operator = ( const BinarySearchTree& rhs )
    	{
    		if( this != &rhs )
    		{
    			Clear();
    
    			m_root = Clone( rhs.m_root );
    			m_size = rhs.m_size;
    		}
    
    		return *this;
    	}
    
    	/*
    	* Clear all node 
    	*
    	*/
    	void Clear()
    	{
    		Clear( m_root );
    		m_size = 0;
    	}
    
    	/*
    	* check whether or not empty
    	*
    	*/
    	bool IsEmpty() const 
    	{
    		return m_size == 0;
    	}
    
    	/*
    	* Retrieve the number of node in tree
    	*
    	*/
    	size_t Size() const 
    	{
    		return m_size;
    	}
    
    	/*
    	*
    	*
    	*/
    	size_t GetSize() const  // only for test
    	{
    		return Size( m_root );
    	}
    
    	/*
    	* Insert key and value pair to tree
    	*
    	*/
    	void Insert( const T& key, const V& value )
    	{
    		Insert( m_root, key, value );
    	}
    
    	/*
    	* Delete node from tree for given key
    	*
    	*/
    	void Delete( const T& key )
    	{
    		Delete( m_root, key );
    	}
    
    	/*
    	* Find element from tree for given key
    	*
    	*/
    	V* Find( const T& key )
    	{
    		pBSTNode node = Find( m_root, key );
    		if( node )
    			return &node->value;
    
    		return 0;
    	}
    
    	/*
    	* Find the the element of max key 
    	*
    	*/
    	V* FindMax( T& key )
    	{
    		pBSTNode node = FindMax( m_root );
    		if( node )
    		{
    			key = node->key;
    			return &node->value;
    		}
    
    		return 0;
    	}
    
    	/*
    	* Find the the element of min key 
    	*
    	*/
    	V* FinMin( T& key )
    	{
    		pBSTNode node = FindMin( m_root );
    		if( node )
    		{
    			key = node->key;
    			return &node->value;
    		}
    
    		return 0;
    	}
    
    	/*
    	* inoder traversal
    	*
    	*/
    	void InorderVisitor( void (*visitor)( const T&, const V& ) )
    	{
    		InorderVisitor( m_root, visitor );
    	}
    
    	/*
    	* preoder traversal
    	*
    	*/
    	void PreOrderVisitor( void (*visitor)( const T&, const V&  )  )
    	{
    		PreOrderVisitor( m_root, visitor );
    	}
    
    	/*
    	* postoder traversal
    	*
    	*/
    	void PostOrderVisitor( void (*visitor)( const T&, const V& ) )
    	{
    		PostOrderVisitor( m_root, visitor );
    	}
    
    protected:
    
    	/*
    	* Implement clone operation
    	*
    	*/
    	pBSTNode Clone( pBSTNode root )
    	{
    		if( 0 == root )
    			return root;
    
    		pBSTNode node = new BSTNode( root->key, root->value );
    		node->leftNode = Clone( root->leftNode );
    		node->rightNode = Clone( root->rightNode );
    
    		return node;
    	}
    
    	/*
    	* Implement clear opreation
    	*
    	*/
    	void Clear( pBSTNode& root )
    	{
    		if( 0 == root )
    			return;
    
    		Clear( root->leftNode );
    		Clear( root->rightNode );
    
    		delete root;
    		root = 0;
    
    	}
    
    
    	/*
    	* Retrieve the number of node by way of recursive
    	*
    	*/
    	size_t Size( pBSTNode root ) const 
    	{
    		if( 0 == root )
    			return 0;
    
    		return 1 + Size( root->leftNode ) + Size( root->rightNode );
    	}
    
    	/*
    	* Implement insert operation
    	*
    	*/
    	void Insert( pBSTNode& root,const T& key, const V& value )
    	{
    		if( 0 == root )
    		{
    			root = new BSTNode( key, value );
    			m_size++;
    		}
    
    		if( root->key < key )
    		{
    			Insert( root->rightNode, key, value );
    		}
    		else if( root->key > key )
    		{
    			Insert( root->leftNode, key, value );
    		}
    	}
    
    	/*
    	* Implement delete operation
    	*
    	*/
    	void Delete( pBSTNode& root, const T& key )
    	{
    		if( 0 == root )
    			return;
    
    		if( root->key < key )
    		{
    			Delete( root->rightNode, key );
    		}
    		else if( root->key > key )
    		{
    			Delete( root->leftNode, key );
    		}
    		else
    		{
    			if( root->leftNode && root->rightNode )
    			{
    				pBSTNode minNode = FindMin( root->rightNode );
    				root->key  = minNode->key;
    				root->value = minNode->value;
    
    				Delete( root->rightNode,  minNode->key );
    			}
    			else 
    			{
    				pBSTNode node = root;
    				root = root->leftNode ? root->leftNode: root->rightNode;
    
    				delete node;
    				node = 0;
    
    				m_size--;  //very important
    				
    			}
    
    			
    		}
    	}
    
    
    	/*
    	* Implement find operation
    	*
    	*/
    	pBSTNode Find( pBSTNode root, const T& key )
    	{
    		if( 0 == root )
    			return root;
    
    		if( root->key < key )
    		{
    			return Find( root->rightNode, key );
    		}
    		else if( root->key > key )
    		{
    			return Find( root->leftNode, key );
    		}
    		else
    		{
    			return root;
    		}
    	}
    
    	/*
    	* Find implement no recursive
    	*
    	*/
    	pBSTNode FindUtil( pBSTNode root, const T& key )
    	{
    		if( 0 == root )
    			return root;
    
    		pBSTNode cur = root;
    		while( root )
    		{
    			cur = root;
    			if( root->key < key )
    			{
    				root = root->rightNode;
    			}
    			else if( root->key > key )
    			{
    				root = root->leftNode;
    			}
    			else
    			{
    				break;
    			}	
    		}
    
    		if( cur  && cur->key == key )
    			return cur;
    
    		return 0;
    	}
    
    
    	/*
    	* Implement find max element operation
    	*
    	*/
    	pBSTNode FindMax( pBSTNode root )
    	{
    		if( 0 == root )
    			return root;
    
    		while( root->rightNode )
    		{
    			root = root->rightNode;
    		}
    
    		return root;
    	}
    
    	/*
    	* Implement find min element operation
    	*
    	*/
    	pBSTNode FindMin( pBSTNode root )
    	{
    		if( 0 == root )
    			return root;
    
    		while( root->leftNode )
    		{
    			root = root->leftNode;
    		}
    
    		return root;
    	}
    
    
    	/*
    	* Implement inorder traversal
    	*
    	*/
    	void InorderVisitor( pBSTNode root, void (*visitor)( const T&, const V& ) )
    	{
    		if( 0 == root )
    			return;
    
    		InorderVisitor( root->leftNode, visitor );
    		visitor( root->key, root->value );
    		InorderVisitor( root->rightNode, visitor );
    	}
    
    	/*
    	* Implement preorder traversal
    	*
    	*/
    	void PreOrderVisitor( pBSTNode root, void (*visitor)( const T&, const V& )  )
    	{
    		if( 0 == root )
    			return;
    
    		visitor( root->key, root->value );
    		InorderVisitor( root->leftNode, visitor );
    		InorderVisitor( root->rightNode, visitor );
    	}
    
    	/*
    	* Implement postorder traversal
    	*
    	*/
    	void PostOrderVisitor( pBSTNode root, void (*visitor)( const T&, const V& ) )
    	{
    		if( 0 == root )
    			return;
    
    		InorderVisitor( root->leftNode, visitor );		
    		InorderVisitor( root->rightNode, visitor );
    		visitor( root->key, root->value );
    	}
    
    protected:
    
    	pBSTNode  m_root;
    
    	size_t    m_size;
    };
    
    
    /*
    * Test STL map
    *
    */
    void TestSTLMapBST()
    {
    	const int Len = 200000;
    	//int key[Len];
    	//int value[Len];
    
    	int* key = new int[Len];
    	int* value = new int[Len];
    
    	for( int i = 0; i < Len; i++ )
    	{
    		key[i] = i;
    		value[i] = i;
    	}
    
    	std::random_shuffle( key, key + Len );
    	std::random_shuffle( value, value  + Len );
    
    	unsigned long start = GetTickCount();
    
    	std::map<int, int> treeObj;
    	for( int i = 0; i < Len; i++ )
    	{
    		treeObj.insert( std::make_pair( key[i], value[i] ) );
    	}
    
    	size_t count = treeObj.size();
    
    	for( int i = 0; i < Len; i++ )
    	{
    		std::map<int, int>::iterator iter = treeObj.find( key[i] );
    		assert( iter != treeObj.end() );
    		assert( iter->second == value[i] );
    	}
    
    
    
    	for( int i = 0; i < Len; i++ )
    	{
    		if( !(i % 15) )
    		{
    			treeObj.erase( key[i] );
    			std::map<int, int>::iterator iter = treeObj.find( key[i] );
    			assert( iter == treeObj.end() );
    
    		}
    	}
    
    
    	unsigned long interval = GetTickCount() - start;
    	printf( " STL map consume time is %d 
    ", interval );
    
    	delete [] key;
    	delete [] value;
    
    }
    
    
    
    
    /*
    * vistior function for output information when traversal tree
    *
    */
    template<class T, class V>
    void Visitor( const T& key, const V& value )
    {
    	std::cout << "key: "  << key << "," <<"value: " << value << std::endl;
    }
    
    
    /*
    * unit test
    *
    */
    void TestBST()
    {
    	const int Len = 200000;
    	//int key[Len];
    	//int value[Len];
    
    	int* key = new int[Len];
    	int* value = new int[Len];
    
    	for( int i = 0; i < Len; i++ )
    	{
    		key[i] = i;
    		value[i] = i;
    	}
    
    	std::random_shuffle( key, key + Len );
    	std::random_shuffle( value, value  + Len );
    
    	unsigned long start = GetTickCount();
    
    	BinarySearchTree<int, int> treeObj;
    	for( int i = 0; i < Len; i++ )
    	{
    		treeObj.Insert( key[i], value[i] );
    	}
    
    	for( int i = 0; i < Len; i++ )
    	{
    		int* val = treeObj.Find( key[i] );
    		assert( *val == value[i] );
    	}
    
    	int minKey = -1;
    	int* minValue = treeObj.FinMin( minKey );
    	assert( minKey == 0 );
    
    	int maxKey = -1;
    	int* maxValue = treeObj.FindMax( maxKey );
    	assert( maxKey == Len - 1 );
    
    	size_t size = treeObj.Size();
    	assert(  size == Len );
    
    	int flagCount = 0;
    	for( int i = 0; i < Len; i++ )
    	{
    		if( !(i % 15) )
    		{
    			treeObj.Delete( i );
    			int* val = treeObj.Find( i );
    			assert( !val );
    
    			flagCount++;
    		}
    	}
    
    	unsigned long interval = GetTickCount() - start;
    	printf( " binary search tree consume time is %d 
    ", interval );
    
    	size = treeObj.Size();
    	size_t count = treeObj.GetSize();
    
    	BinarySearchTree<int, int> newTreeObj;
    	for( int i = 0; i < 10; i++ )
    	{
    		newTreeObj.Insert( key[i], value[i] );
    	}
    
    	treeObj = newTreeObj;
    	newTreeObj.Clear();
    
    	std::cout<< "begin inorder traversal " << std::endl;
    	treeObj.InorderVisitor( Visitor<int, int> );
    
    	std::cout<< "begin postorder traversal " << std::endl;
    	treeObj.PostOrderVisitor( Visitor<int, int> );
    
    	std::cout<< "begin preorder traversal " << std::endl;
    	treeObj.PreOrderVisitor( Visitor<int, int> );
    
    	treeObj.Clear();
    
    
    	delete [] key;
    	delete [] value;
    }
    
    
    void TestBSTSuite()
    {
    	TestSTLMapBST();
    	TestBST();
    }
    
    
    
    #endif 


  • 相关阅读:
    hadoop之 解析HDFS的写文件流程
    Linux之 手动释放内存
    Heka 的编译
    go get 下载需要的相关工具
    峰值计算的方法
    thrift简介
    Bazaar 版本控制工具
    Homebrew
    虚拟机下centos时间不正确的方便解决方法
    golang 应用的部署相关技术
  • 原文地址:https://www.cnblogs.com/yxwkf/p/5052030.html
Copyright © 2011-2022 走看看