zoukankan      html  css  js  c++  java
  • POJ2155:Matrix(二维树状数组,经典)

    Description

    Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1 <= i, j <= N). 

    We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a '0' then change it into '1' otherwise change it into '0'). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions. 

    1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2). 
    2. Q x y (1 <= x, y <= n) querys A[x, y]. 

    Input

    The first line of the input is an integer X (X <= 10) representing the number of test cases. The following X blocks each represents a test case. 

    The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2 y2", which has been described above. 

    Output

    For each querying output one line, which has an integer representing A[x, y]. 

    There is a blank line between every two continuous test cases. 

    Sample Input

    1
    2 10
    C 2 1 2 2
    Q 2 2
    C 2 1 2 1
    Q 1 1
    C 1 1 2 1
    C 1 2 1 2
    C 1 1 2 2
    Q 1 1
    C 1 1 2 1
    Q 2 1
    

    Sample Output

    1
    0
    0
    1
    

    Source

    POJ Monthly,Lou Tiancheng

    这道题确实非常经典,尤其在这个二进制的计算方面
    具体的能够參考《浅谈信息学竞赛中的“0”和“1”》此论文。网上非常多说的并不具体,大多仅仅介绍了翻转。并没有介绍为何sum(x,y)%2能得到结果
    论文里非常具体的证明了

    #include <iostream>
    #include <stdio.h>
    #include <string.h>
    #include <string>
    #include <stack>
    #include <queue>
    #include <map>
    #include <set>
    #include <vector>
    #include <math.h>
    #include <bitset>
    #include <list>
    #include <algorithm>
    #include <climits>
    using namespace std;
    
    #define lson 2*i
    #define rson 2*i+1
    #define LS l,mid,lson
    #define RS mid+1,r,rson
    #define UP(i,x,y) for(i=x;i<=y;i++)
    #define DOWN(i,x,y) for(i=x;i>=y;i--)
    #define MEM(a,x) memset(a,x,sizeof(a))
    #define W(a) while(a)
    #define gcd(a,b) __gcd(a,b)
    #define LL long long
    #define N 1005
    #define INF 0x3f3f3f3f
    #define EXP 1e-8
    #define lowbit(x) (x&-x)
    const int mod = 1e9+7;
    
    int c[N][N],n,m,cnt,s,t;
    int a[N][N];
    
    
    int sum(int x,int y)
    {
        int ret = 0;
        int i,j;
        for(i = x;i>=1;i-=lowbit(i))
        {
            for(j = y;j>=1;j-=lowbit(j))
            {
                ret+=c[i][j];
            }
        }
        return ret;
    }
    
    void add(int x,int y)
    {
        int i,j;
        for(i = x;i<=n;i+=lowbit(i))
        {
            for(j = y;j<=n;j+=lowbit(j))
            {
                c[i][j]++;
            }
        }
    }
    
    int main()
    {
        int i,j,x,y,ans,t;
        int x1,x2,y1,y2;
        char op[10];
        scanf("%d",&t);
        while(t--)
        {
            scanf("%d%d",&n,&m);
            MEM(c,0);
            MEM(a,0);
            while(m--)
            {
                scanf("%s",op);
                if(op[0]=='C')
                {
                    scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
                    x1++,y1++,x2++,y2++;
                    add(x2,y2);
                    add(x1-1,y1-1);
                    add(x2,y1-1);
                    add(x1-1,y2);
                }
                else
                {
                    scanf("%d%d",&x1,&y1);
                    x2 = x1,y2 = y1;
                    x1++,y1++,x2++,y2++;
                    printf("%d
    ",sum(x1,y1));
                }
            }
            printf("
    ");
        }
    
        return 0;
    }
    


  • 相关阅读:
    OpenLayers的定制
    基于Emgu CV的人脸检测代码
    C#中跨库事务处理解决方案
    SqlHelper简单实现(通过Expression和反射)5.Lambda表达式解析类
    SqlHelper简单实现(通过Expression和反射)8.Sql Server数据处理类
    SqlHelper简单实现(通过Expression和反射)6.Providor模式(工厂+策略)可配置数据库选择
    SqlHelper简单实现(通过Expression和反射)1.引言
    SqlHelper简单实现(通过Expression和反射)3.实体,数据传输对象(DTO)Helper类设计
    SqlHelper简单实现(通过Expression和反射)7.MySql数据处理类
    SqlHelper简单实现(通过Expression和反射)10.使用方式
  • 原文地址:https://www.cnblogs.com/yxwkf/p/5090566.html
Copyright © 2011-2022 走看看