zoukankan      html  css  js  c++  java
  • [ACM] POJ 1442 Black Box (堆,优先队列)

    Black Box
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 7099   Accepted: 2888

    Description

    Our Black Box represents a primitive database. It can save an integer array and has a special i variable. At the initial moment Black Box is empty and i equals 0. This Black Box processes a sequence of commands (transactions). There are two types of transactions: 

    ADD (x): put element x into Black Box; 
    GET: increase i by 1 and give an i-minimum out of all integers containing in the Black Box. Keep in mind that i-minimum is a number located at i-th place after Black Box elements sorting by non- descending. 

    Let us examine a possible sequence of 11 transactions: 

    Example 1 
    N Transaction i Black Box contents after transaction Answer 
    
          (elements are arranged by non-descending)   
    
    1 ADD(3)      0 3   
    
    2 GET         1 3                                    3 
    
    3 ADD(1)      1 1, 3   
    
    4 GET         2 1, 3                                 3 
    
    5 ADD(-4)     2 -4, 1, 3   
    
    6 ADD(2)      2 -4, 1, 2, 3   
    
    7 ADD(8)      2 -4, 1, 2, 3, 8   
    
    8 ADD(-1000)  2 -1000, -4, 1, 2, 3, 8   
    
    9 GET         3 -1000, -4, 1, 2, 3, 8                1 
    
    10 GET        4 -1000, -4, 1, 2, 3, 8                2 
    
    11 ADD(2)     4 -1000, -4, 1, 2, 2, 3, 8   

    It is required to work out an efficient algorithm which treats a given sequence of transactions. The maximum number of ADD and GET transactions: 30000 of each type. 


    Let us describe the sequence of transactions by two integer arrays: 


    1. A(1), A(2), ..., A(M): a sequence of elements which are being included into Black Box. A values are integers not exceeding 2 000 000 000 by their absolute value, M <= 30000. For the Example we have A=(3, 1, -4, 2, 8, -1000, 2). 

    2. u(1), u(2), ..., u(N): a sequence setting a number of elements which are being included into Black Box at the moment of first, second, ... and N-transaction GET. For the Example we have u=(1, 2, 6, 6). 

    The Black Box algorithm supposes that natural number sequence u(1), u(2), ..., u(N) is sorted in non-descending order, N <= M and for each p (1 <= p <= N) an inequality p <= u(p) <= M is valid. It follows from the fact that for the p-element of our u sequence we perform a GET transaction giving p-minimum number from our A(1), A(2), ..., A(u(p)) sequence. 


    Input

    Input contains (in given order): M, N, A(1), A(2), ..., A(M), u(1), u(2), ..., u(N). All numbers are divided by spaces and (or) carriage return characters.

    Output

    Write to the output Black Box answers sequence for a given sequence of transactions, one number each line.

    Sample Input

    7 4
    3 1 -4 2 8 -1000 2
    1 2 6 6

    Sample Output

    3
    3
    1
    2

    Source


    解题思路:

    题意不好懂。。

    我直接解释下例子什么意思把。

    7 4
    3 1 -4 2 8 -1000 2
    1 2 6 6
    7代表以下给定7个数的数字序列。4能够理解为四次查询, 1 2 6 6为查讯。第一次查询是求数字序列仅仅有前一个数(3)时。此时的第一小的数字,即1,第二次查询是求数字序列仅仅有前2个数(3 1)时。此时的第二小的数字,即 3,第三次查询是求数字序列仅仅有前6个数时(3,1,-4,2,8,-1000)。此时的第三小的数字,即1,第四次查询是求数字序列仅仅有前6个数时。此时的第四小的数字。

    思路为: 当求第4小的数字时,我们用一个大顶堆来维护前三个最小的数字,那么小顶堆的堆顶即为所求。

    用priority_queue<int>big;  优先队列还起到大顶堆的作用,顶部即为最大值  ,即 big.top();
        priority_queue<int,vector<int>,greater<int> >small;   小顶堆。顶堆为最小值 。即 small.top();

    用例子来说明一下 大顶堆和小顶堆工作方法:

    1 2 6 6

    首先是1:  把第一个数3 插入到小顶堆中,这时候推断。假设大顶堆不为空且小顶堆的top小于大顶堆的top时,就把二者的top值互换,由于,大顶堆中的数不能比小顶堆中的大。大顶堆维护第i次查询时,前i-1个最小的数,这时候大顶堆为空,不用互换值。 输出第一次查询时前1个数的第1小的数即为 小顶堆的top 3,然后把小顶堆的top 移除。放到大顶堆中。

    然后是2: 把第二个数1插入到小顶堆中。推断,大顶堆不为空,小顶.top() 1 <大顶.top() 3 ,所以二者互换,小顶.top()为3,大顶top()为1。 然后输出小顶.top(),即为第二小的数。把小顶的.top()移除,放入大顶中。这是大顶中维护的是眼下数字中前两个最小的数。

    然后是6: 要求前6个数中第3小的数字,先得把3 1以后的四个数字插入才可以六个数。依次插入,  -4插入小顶堆。这时 大顶堆 3 1,-4<3,互换,  小顶堆 3,大顶堆为1 -4 ,2插入小顶堆,小顶堆 2,3  大顶堆 1 -4,  2>1,不用互换,  8插入到小顶堆。小顶堆为  2,3,8  大顶堆为 1。-4。  2>1,不用互换,-1000插入到小顶堆。小顶堆 -1000,2,3,8,大顶堆1,-4, -1000<1,不行,互换以后得小顶堆。1,2,3,8 , 大顶堆 -1000。-4 ,输出小顶堆.top() 1。 并把它移除放入到大顶堆中。为下次查询做准备。

    所以从以上能够看出,关键点就是第i次查询时,大顶堆中维护的总是眼下数字中最小的 i-1个数。


    代码:

    #include <iostream>
    #include <stdio.h>
    #include <queue>
    #include <algorithm>
    using namespace std;
    const int maxn=30010;
    int num[maxn];
    int n,m;
    
    int main()
    {
        priority_queue<int>big;
        priority_queue<int,vector<int>,greater<int> >small;
        int m,n;
        scanf("%d%d",&m,&n);
        for(int i=1;i<=m;i++)
            scanf("%d",&num[i]);
        int cnt=1;
        int op;
        for(int i=1;i<=n;i++)
        {
            cin>>op;
            while(cnt<=op)
            {
                small.push(num[cnt]);
                if(!big.empty()&&small.top()<big.top())//小顶堆里面的数不能比大顶堆里面的数小
                {
                    int n1=big.top();
                    int n2=small.top();
                    big.pop();
                    small.pop();
                    big.push(n2);
                    small.push(n1);
                }
                cnt++;
            }
            printf("%d
    ",small.top());
            big.push(small.top());//这句话非常关键。保证了在求第k个最小数时。大顶堆里面保存的是前k-1个最小数
            small.pop();
        }
        return 0;
    }
    




  • 相关阅读:
    【sqli-labs】 less37 POST- Bypass MYSQL_real_escape_string (POST型绕过MYSQL_real_escape_string的注入)
    【sqli-labs】 less36 GET- Bypass MYSQL_real_escape_string (GET型绕过MYSQL_real_escape_string的注入)
    【sqli-labs】 less35 GET- Bypass Add Slashes(we dont need them) Integer based (GET型绕过addslashes() 函数的整型注入)
    【sqli-labs】 less34 POST- Bypass AddSlashes (POST型绕过addslashes() 函数的宽字节注入)
    【sqli-labs】 less33 GET- Bypass AddSlashes (GET型绕过addslashes() 函数的宽字节注入)
    【sqli-labs】 less31 GET- Blind -Impidence mismatch -Having a WAF in front of web application (GET型基于盲注的带有WAF注入)
    iptables(3)
    iptables(2)
    iptables(1)
    rsync服务部署
  • 原文地址:https://www.cnblogs.com/yxwkf/p/5263017.html
Copyright © 2011-2022 走看看