Title:
There are N children standing in a line. Each child is assigned a rating value.
You are giving candies to these children subjected to the following requirements:
- Each child must have at least one candy.
- Children with a higher rating get more candies than their neighbors.
What is the minimum candies you must give?
思路(1): 1 4 3 2 1 对于这样的等级,我的想法是依次加,前两个是1,2,但是到3的时候就是1,不过与后面的2,1就会冲突,所以就需要向前调整,将4对应的改为4. 不过这个调整的我们可以发现是针对递减序列的,所以我就想到其实我们可以每次找到一个波谷,波谷的峰值可以由两边决定。另外,权值相等的时候,如2,4,4,第二个4的权重完全可以是1,由题目的最后一句得到。
class Solution { public: int candy(vector<int>& ratings) { int s_val = 1; int sum = 0; for (int i = 0; i < ratings.size(); ){ int s_idx = i; while (i < ratings.size()-1 && ratings[i] < ratings[i+1]){ //递增 sum += (s_val + i - s_idx); i++; } int m_idx = i; while (i < ratings.size()-1 && ratings[i] > ratings[i+1]){//递减 sum += (i - m_idx + 1); i++; } int m_val = max(s_val+(m_idx-s_idx),i-m_idx+1); //设定波峰值 sum += m_val; if (i < ratings.size()-1 && ratings[i] == ratings[i+1])//对于权值相等的处理 s_val = 1; else s_val = 2; i++; } return sum; } };
思路(2)首先我们会给每个小朋友一颗糖果,然后从左到右,假设第i个小孩的等级比第i - 1个小孩高,那么第i的小孩的糖果数量就是第i - 1个小孩糖果数量在加一。再我们从右到左,如果第i个小孩的等级大于第i + 1个小孩的,同时第i个小孩此时的糖果数量小于第i + 1的小孩,那么第i个小孩的糖果数量就是第i + 1个小孩的糖果数量加一。
class Solution { public: int candy(vector<int>& ratings) { int sum = 0; vector<int> v(ratings.size(),1); for (int i = 1; i < ratings.size(); i++){ if (ratings[i] > ratings[i-1]) v[i] = v[i-1] + 1; } sum += v[ratings.size()-1]; for (int i = ratings.size()-2; i >= 0; i--){ if (ratings[i] > ratings[i+1] && v[i] <= v[i+1]){ v[i] = v[i+1]+1; } sum += v[i]; } return sum; } };