zoukankan      html  css  js  c++  java
  • Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十三)kafka+spark streaming打包好的程序提交时提示虚拟内存不足(Container is running beyond virtual memory limits. Current usage: 119.5 MB of 1 GB physical memory used; 2.2 GB of 2.1 G)

    异常问题:Container is running beyond virtual memory limits. Current usage: 119.5 MB of 1 GB physical memory used; 2.2 GB of 2.1 GB virtual memory used. Killing container.

    spark-submit提交脚本:

    [spark@master work]$ more submit.sh 
    #! /bin/bash
    jars=""
    
    for file in `ls /home/spark/work/jars/*.jar`
    do
            jars=$file,$jars
            #echo $jars
    done
    
    
    echo "------------------------------------"
    echo $jars
    echo "------------------------------------"
    
    /opt/spark-2.2.1-bin-hadoop2.7/bin/spark-submit 
    --jars $jars 
    --master yarn 
    --verbose 
    --driver-java-options "-XX:+TraceClassPaths" 
    --num-executors 2 
    --executor-memory 1G 
    --executor-cores 1 
    --driver-memory 1G 
    --class com.dx.streaming.producer.TestProducer 
    /home/spark/work/kafka-streaming-test.jar

    在master节点上提交后,抛出异常:

    18/07/09 05:00:16 INFO yarn.Client: Application report for application_1531069155353_0001 (state: ACCEPTED)
    18/07/09 05:00:17 INFO yarn.Client: Application report for application_1531069155353_0001 (state: FAILED)
    18/07/09 05:00:17 INFO yarn.Client: 
             client token: N/A
             diagnostics: Application application_1531069155353_0001 failed 2 times due to AM Container for appattempt_1531069155353_0001_000002 exited with  exitCode: -103
    Failing this attempt.Diagnostics: [2018-07-09 05:00:16.132]Container [pid=5674,containerID=container_e22_1531069155353_0001_02_000001] is running beyond virtual memory limits. Current usage: 195.8 MB of 1 GB physical memory used; 2.3 GB of 2.1 GB virtual memory used. Killing container.
    Dump of the process-tree for container_e22_1531069155353_0001_02_000001 :
            |- PID PPID PGRPID SESSID CMD_NAME USER_MODE_TIME(MILLIS) SYSTEM_TIME(MILLIS) VMEM_USAGE(BYTES) RSSMEM_USAGE(PAGES) FULL_CMD_LINE
            |- 5674 5673 5674 5674 (bash) 0 0 115896320 350 /bin/bash -c /opt/jdk1.8.0_171/bin/java -server -Xmx512m -Djava.io.tmpdir=/opt/hadoop-2.9.0/tmp/nm-local-dir/usercache/spark/appcache/application_1531069155353_0001/container_e22_1531069155353_0001_02_000001/tmp -Dspark.yarn.app.container.log.dir=/opt/hadoop-2.9.0/logs/userlogs/application_1531069155353_0001/container_e22_1531069155353_0001_02_000001 org.apache.spark.deploy.yarn.ExecutorLauncher --arg '192.168.0.120:40486' --properties-file /opt/hadoop-2.9.0/tmp/nm-local-dir/usercache/spark/appcache/application_1531069155353_0001/container_e22_1531069155353_0001_02_000001/__spark_conf__/__spark_conf__.properties 1> /opt/hadoop-2.9.0/logs/userlogs/application_1531069155353_0001/container_e22_1531069155353_0001_02_000001/stdout 2> /opt/hadoop-2.9.0/logs/userlogs/application_1531069155353_0001/container_e22_1531069155353_0001_02_000001/stderr 
            |- 5687 5674 5674 5674 (java) 208 35 2323283968 49770 /opt/jdk1.8.0_171/bin/java -server -Xmx512m -Djava.io.tmpdir=/opt/hadoop-2.9.0/tmp/nm-local-dir/usercache/spark/appcache/application_1531069155353_0001/container_e22_1531069155353_0001_02_000001/tmp -Dspark.yarn.app.container.log.dir=/opt/hadoop-2.9.0/logs/userlogs/application_1531069155353_0001/container_e22_1531069155353_0001_02_000001 org.apache.spark.deploy.yarn.ExecutorLauncher --arg 192.168.0.120:40486 --properties-file /opt/hadoop-2.9.0/tmp/nm-local-dir/usercache/spark/appcache/application_1531069155353_0001/container_e22_1531069155353_0001_02_000001/__spark_conf__/__spark_conf__.properties 
    [2018-07-09 05:00:16.133]
    [2018-07-09 05:00:16.152]Container killed on request. Exit code is 143[2018-07-09 05:00:16.152]
    [2018-07-09 05:00:16.156]Container exited with a non-zero exit code 143. [2018-07-09 05:00:16.156]
    For more detailed output, check the application tracking page: http://master:8088/cluster/app/application_1531069155353_0001 Then click on links to logs of each attempt.
    . Failing the application.
             ApplicationMaster host: N/A
             ApplicationMaster RPC port: -1
             queue: default
             start time: 1531083596749
             final status: FAILED
             tracking URL: http://master:8088/cluster/app/application_1531069155353_0001
             user: spark
    18/07/09 05:00:17 INFO yarn.Client: Deleted staging directory hdfs://HA/user/spark/.sparkStaging/application_1531069155353_0001
    18/07/09 05:00:17 ERROR spark.SparkContext: Error initializing SparkContext.
    org.apache.spark.SparkException: Yarn application has already ended! It might have been killed or unable to launch application master.
            at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.waitForApplication(YarnClientSchedulerBackend.scala:85)
            at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:62)
            at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:173)
            at org.apache.spark.SparkContext.<init>(SparkContext.scala:509)
    ▽       at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2516)
            at org.apache.spark.sql.SparkSession$Builder$$anonfun$6.apply(SparkSession.scala:918)
            at org.apache.spark.sql.SparkSession$Builder$$anonfun$6.apply(SparkSession.scala:910)
            at scala.Option.getOrElse(Option.scala:121)
            at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:910)
            at com.dx.streaming.producer.TestProducer.main(TestProducer.java:39)
            at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
            at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
            at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
            at java.lang.reflect.Method.invoke(Method.java:498)
            at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:775)
            at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:180)
            at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:205)
            at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:119)
            at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
    18/07/09 05:00:17 INFO server.AbstractConnector: Stopped Spark@60d84f61{HTTP/1.1,[http/1.1]}{0.0.0.0:4040}
    18/07/09 05:00:17 INFO ui.SparkUI: Stopped Spark web UI at http://192.168.0.120:4040
    18/07/09 05:00:17 WARN cluster.YarnSchedulerBackend$YarnSchedulerEndpoint: Attempted to request executors before the AM has registered!
    18/07/09 05:00:17 INFO cluster.YarnClientSchedulerBackend: Shutting down all executors
    18/07/09 05:00:17 INFO cluster.YarnSchedulerBackend$YarnDriverEndpoint: Asking each executor to shut down
    18/07/09 05:00:17 INFO cluster.SchedulerExtensionServices: Stopping SchedulerExtensionServices
    (serviceOption=None,
     services=List(),
     started=false)
    18/07/09 05:00:17 INFO cluster.YarnClientSchedulerBackend: Stopped
    18/07/09 05:00:17 INFO spark.MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped!
    18/07/09 05:00:17 INFO memory.MemoryStore: MemoryStore cleared
    18/07/09 05:00:17 INFO storage.BlockManager: BlockManager stopped
    18/07/09 05:00:17 INFO storage.BlockManagerMaster: BlockManagerMaster stopped
    18/07/09 05:00:17 WARN metrics.MetricsSystem: Stopping a MetricsSystem that is not running
    18/07/09 05:00:17 INFO scheduler.OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped!
    18/07/09 05:00:17 INFO spark.SparkContext: Successfully stopped SparkContext
    Exception in thread "main" org.apache.spark.SparkException: Yarn application has already ended! It might have been killed or unable to launch application master.
            at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.waitForApplication(YarnClientSchedulerBackend.scala:85)
            at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:62)
            at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:173)
            at org.apache.spark.SparkContext.<init>(SparkContext.scala:509)
            at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2516)
            at org.apache.spark.sql.SparkSession$Builder$$anonfun$6.apply(SparkSession.scala:918)
            at org.apache.spark.sql.SparkSession$Builder$$anonfun$6.apply(SparkSession.scala:910)
            at scala.Option.getOrElse(Option.scala:121)
            at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:910)
            at com.dx.streaming.producer.TestProducer.main(TestProducer.java:39)
            at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
            at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
            at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
            at java.lang.reflect.Method.invoke(Method.java:498)
            at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:775)
            at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:180)
            at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:205)
            at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:119)
            at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
    18/07/09 05:00:17 INFO util.ShutdownHookManager: Shutdown hook called
    18/07/09 05:00:17 INFO util.ShutdownHookManager: Deleting directory /opt/spark-2.2.1-bin-hadoop2.7/spark-255c65cf-19d8-481a-94bc-843e058eb669

    错误原因:

    Container is running beyond virtual memory limits. Current usage: 119.5 MB of 1 GB physical memory used; 2.2 GB of 2.1 GB virtual memory used. Killing container.

    YARN的虚拟内存计算方式导致,上例中用户程序申请的内存为1Gb,YARN根据此值乘以一个比例(默认为2.1)得出申请的虚拟内存的值,当YARN计算的用户程序所需虚拟内存值大于计算出来的值时,就会报出以上错误。

    解决方案:

    上网一查,发现有两种方法能解决这个问题:

        1.将yarn.nodemanager.vmem-check-enabled的值改为false,即不检查VM的值;(修改yarn-site.xml)参考《https://discuss.elastic.co/t/unable-to-start-elasticsearch-yarn-container-is-running-beyond-virtual-memory-limits/26102/6》

    <property>
        <name>yarn.nodemanager.vmem-check-enabled</name>
        <value>false</value>
    </property>

         2.将yarn.scheduler.minimum-allocation-mb的值调高一些,默认是1024mb,或者修改yarn.nodemanager.vmem-pmem-ratio的值,默认为2.1,将该值改得更大。

    于是,这里我采用了第一种方法,关闭vn检查,需要重新格式化namenode,参考《Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十)安装hadoop2.9.0搭建HA》,再次提交,果然好了。终于解决了这个困扰一天的问题啦!

  • 相关阅读:
    自定义时间工具类
    http和https
    客户端是什么意思
    19.在HTTP 1.0中,状态码401的含义是(?);如果返回“找不到文件”的提示,则可用 header 函数,其语句为(?)写出http常见的状态码和含义,至少5个.[完善题目]
    20.谈谈对mvc的认识。
    18.有一个网页地址, 比如PHP开发资源网主页: http://www.phpres.com/index.html,如何得到它的内容?
    17.如何修改SESSION的生存时间。
    16.语句include和require的区别是什么?为避免多次包含同一文件,可用(?)语句代替它们?
    14.对于大流量的网站,您采用什么样的方法来解决访问量问题?
    15.用PHP写出显示客户端IP与服务器IP的代码,如何防止用户使用代理的情况?[添加更多详情]
  • 原文地址:https://www.cnblogs.com/yy3b2007com/p/9281354.html
Copyright © 2011-2022 走看看