第一题就LCA即可。不过推荐用Tarjan(最快,常数很小)。然后Tarjan的时候顺便就出一个dist[i],表示i节点到根节点的距离。求出了LCA,那么两点间的距离就为dist[u] + dist[v] - 2 * dist[lca]。
Code
1 #include<iostream> 2 #include<sstream> 3 #include<cstdio> 4 #include<cmath> 5 #include<cstdlib> 6 #include<cstring> 7 #include<cctype> 8 #include<queue> 9 #include<set> 10 #include<map> 11 #include<stack> 12 #include<vector> 13 #include<algorithm> 14 #ifndef WIN32 15 #define AUTO "%I64d" 16 #else 17 #define AUTO "%lld" 18 #endif 19 using namespace std; 20 typedef bool boolean; 21 #define smin(a, b) (a) = min((a), (b)) 22 #define smax(a, b) (a) = max((a), (b)) 23 template<typename T> 24 inline void readInteger(T& u){ 25 char x; 26 int aFlag = 1; 27 while(!isdigit((x = getchar())) && x != '-'); 28 if(x == '-'){ 29 aFlag = -1; 30 x = getchar(); 31 } 32 for(u = x - '0'; isdigit((x = getchar())); u = u * 10 + x - '0'); 33 ungetc(x, stdin); 34 u *= aFlag; 35 } 36 37 typedef class Edge { 38 public: 39 int end; 40 int next; 41 int w; 42 Edge(const int end = 0, const int next = 0, const int w = 0):end(end), next(next), w(w){ } 43 }Edge; 44 45 typedef class MapManager{ 46 public: 47 int ce; 48 Edge* edges; 49 int* h; 50 MapManager():ce(0), edges(NULL), h(NULL){ } 51 MapManager(int points, int limit):ce(0){ 52 edges = new Edge[(const int)(limit + 1)]; 53 h = new int[(const int)(points + 1)]; 54 memset(h, 0, sizeof(int) * (points + 1)); 55 } 56 inline void addEdge(int from, int end, int w){ 57 edges[++ce] = Edge(end, h[from], w); 58 h[from] = ce; 59 } 60 inline void addDoubleEdge(int from, int end, int w){ 61 addEdge(from, end, w); 62 addEdge(end, from, w); 63 } 64 Edge& operator [](int pos){ 65 return edges[pos]; 66 } 67 }MapManager; 68 #define m_begin(g, i) (g).h[(i)] 69 70 typedef class union_found{ 71 public: 72 int *f; 73 union_found():f(NULL) {} 74 union_found(int points) { 75 f = new int[(const int)(points + 1)]; 76 } 77 int find(int x) { 78 if(f[x] != x) return f[x] = find(f[x]); 79 return f[x]; 80 } 81 void unit(int fa, int so) { 82 int ffa = find(fa); 83 int fso = find(so); 84 f[fso] = ffa; 85 } 86 int& operator [](int pos){ 87 return f[pos]; 88 } 89 }union_found; 90 91 int n, m; 92 MapManager g; 93 MapManager q; 94 int *results; 95 boolean* enable; 96 int *querya, *queryb; 97 union_found uf; 98 boolean* visited; 99 int* dist; 100 101 inline void init(){ 102 readInteger(n); 103 g = MapManager(n, 2 * n); 104 for(int i = 1, a, b, c; i < n; i++){ 105 readInteger(a); 106 readInteger(b); 107 readInteger(c); 108 g.addDoubleEdge(a, b, c); 109 } 110 readInteger(m); 111 q = MapManager(n, 2 * m); 112 querya = new int[(const int)(m + 1)]; 113 queryb = new int[(const int)(m + 1)]; 114 results = new int[(const int)(m + 1)]; 115 enable = new boolean[(const int)(m + 1)]; 116 dist = new int[(const int)(n + 1)]; 117 uf = union_found(n); 118 visited = new boolean[(const int)(n + 1)]; 119 memset(visited, false, sizeof(boolean) * (n + 1)); 120 memset(enable, true, sizeof(boolean) * (m + 1)); 121 for(int i = 1; i <= m; i++){ 122 readInteger(querya[i]); 123 readInteger(queryb[i]); 124 q.addDoubleEdge(querya[i], queryb[i], i); 125 } 126 dist[1] = 0; 127 } 128 129 void tarjan(int node, int f){ 130 uf[node] = node; 131 visited[node] = true; 132 for(int i = m_begin(g, node); i != 0; i = g[i].next){ 133 int& e = g[i].end; 134 if(e == f) continue; 135 dist[e] = dist[node] + g[i].w; 136 tarjan(e, node); 137 uf[e] = node; 138 } 139 for(int i = m_begin(q, node); i != 0; i = q[i].next) { 140 int& e = q[i].end; 141 if(visited[e] && enable[q[i].w]){ 142 int lca = uf.find(e); 143 results[q[i].w] = lca; 144 enable[q[i].w] = false; 145 } 146 } 147 } 148 149 inline void solve(){ 150 tarjan(1, 0); 151 for(int i = 1; i <= m; i++){ 152 int dis = dist[querya[i]] + dist[queryb[i]] - 2 * dist[results[i]]; 153 printf("%d ", dis); 154 } 155 } 156 157 int main(){ 158 freopen("distance.in", "r", stdin); 159 freopen("distance.out", "w", stdout); 160 init(); 161 solve(); 162 return 0; 163 }
1 #include<iostream> 2 #include<sstream> 3 #include<cstdio> 4 #include<cmath> 5 #include<cstdlib> 6 #include<cstring> 7 #include<cctype> 8 #include<queue> 9 #include<set> 10 #include<map> 11 #include<stack> 12 #include<vector> 13 #include<algorithm> 14 #ifndef WIN32 15 #define AUTO "%I64d" 16 #else 17 #define AUTO "%lld" 18 #endif 19 using namespace std; 20 typedef bool boolean; 21 #define smin(a, b) (a) = min((a), (b)) 22 #define smax(a, b) (a) = max((a), (b)) 23 template<typename T> 24 inline void readInteger(T& u){ 25 char x; 26 int aFlag = 1; 27 while(!isdigit((x = getchar())) && x != '-'); 28 if(x == '-'){ 29 aFlag = -1; 30 x = getchar(); 31 } 32 for(u = x - '0'; isdigit((x = getchar())); u = u * 10 + x - '0'); 33 ungetc(x, stdin); 34 u *= aFlag; 35 } 36 37 template<typename T>class Matrix{ 38 public: 39 T *p; 40 int lines; 41 int rows; 42 Matrix():p(NULL){ } 43 Matrix(int rows, int lines):lines(lines), rows(rows){ 44 p = new T[(lines * rows)]; 45 } 46 T* operator [](int pos){ 47 return (p + pos * lines); 48 } 49 }; 50 #define matset(m, i, s) memset((m).p, (i), (s) * (m).lines * (m).rows) 51 52 ///map template starts 53 typedef class Edge{ 54 public: 55 int end; 56 int next; 57 int w; 58 Edge(const int end = 0, const int next = 0, const int w = 0):end(end), next(next), w(w){} 59 }Edge; 60 typedef class MapManager{ 61 public: 62 int ce; 63 int *h; 64 int w; 65 Edge *edge; 66 MapManager(){} 67 MapManager(int points, int limit):ce(0){ 68 h = new int[(const int)(points + 1)]; 69 edge = new Edge[(const int)(limit + 1)]; 70 memset(h, 0, sizeof(int) * (points + 1)); 71 } 72 inline void addEdge(int from, int end, int w){ 73 edge[++ce] = Edge(end, h[from], w); 74 h[from] = ce; 75 } 76 inline void addDoubleEdge(int from, int end, int w){ 77 addEdge(from, end, w); 78 addEdge(end, from, w); 79 } 80 Edge& operator[] (int pos) { 81 return edge[pos]; 82 } 83 }MapManager; 84 #define m_begin(g, i) (g).h[(i)] 85 ///map template ends 86 87 int n, m; 88 int cnt = 0; 89 Matrix<int> st; 90 int* seq; 91 int* dep; 92 int *app; 93 MapManager g; 94 int *mlog2; 95 long long *dist; 96 97 inline void init() { 98 readInteger(n); 99 g = MapManager(n, 2 * n); 100 seq = new int[(const int)(2 * n + 1)]; 101 dist = new long long[(const int)(n + 1)]; 102 dep = new int[(const int)(n + 1)]; 103 app = new int[(const int)(n + 1)]; 104 for(int i = 1, a, b, w; i < n; i++){ 105 readInteger(a); 106 readInteger(b); 107 readInteger(w); 108 g.addDoubleEdge(a, b, w); 109 } 110 dist[1] = 0; 111 dep[0] = 0; 112 } 113 114 void dfs(int node, int f) { 115 seq[++cnt] = node; 116 app[node] = cnt; 117 dep[node] = dep[f] + 1; 118 for(int i = m_begin(g, node); i != 0; i = g[i].next) { 119 int& e = g[i].end; 120 if(e == f) continue; 121 dist[e] = dist[node] + g[i].w; 122 dfs(e, node); 123 seq[++cnt] = node; 124 } 125 } 126 127 inline void init_log() { 128 mlog2 = new int[(const int)(2 * n + 1)]; 129 mlog2[1] = 0; 130 for(int i = 2; i <= 2 * n; i++) 131 mlog2[i] = mlog2[i / 2] + 1; 132 } 133 134 inline void init_st() { 135 init_log(); 136 st = Matrix<int>(cnt, mlog2[cnt] + 1); 137 for(int i = 1; i <= cnt; i++) 138 st[i][0] = seq[i]; 139 for(int j = 1; j <= mlog2[cnt]; j++) 140 for(int i = 1; i + (1 << j) - 1 <= cnt; i++) 141 st[i][j] = (dep[st[i][j - 1]] < dep[st[i + (1 << (j - 1))][j - 1]]) ? (st[i][j - 1]) : (st[i + (1 << (j - 1))][j - 1]); 142 } 143 144 inline int lca(int a, int b) { 145 if(app[a] > app[b]) swap(a, b); 146 int pos = mlog2[app[b] - app[a] + 1]; 147 int u = st[app[a]][pos]; 148 int v = st[app[b] - (1 << pos) + 1][pos]; 149 return (dep[u] > dep[v]) ? (v) : (u); 150 } 151 152 long long dis; 153 inline void solve() { 154 readInteger(m); 155 for(int i = 1, a, b; i <= m; i++){ 156 readInteger(a); 157 readInteger(b); 158 int l = lca(a, b); 159 dis = dist[a] + dist[b] - 2 * dist[l]; 160 printf(AUTO" ", dis); 161 } 162 } 163 164 int main() { 165 freopen("distance.in", "r", stdin); 166 freopen("distance.out", "w", stdout); 167 init(); 168 dfs(1, 0); 169 init_st(); 170 solve(); 171 return 0; 172 }
话说ST表在n,q都尽量大的情况下,其他数据随机,竟然平均一个点比Tarjan 0.05s左右。(也有可能是我的st表写得比较丑)
第二题还是一遍dfs序,接着可以开开心心地放线段树去装逼了。(然而我把某些"+="写成了"=",于是AK又没有了。。一定是写这道题和检查的时候头脑都不清醒)
Code
1 #include<iostream> 2 #include<sstream> 3 #include<cstdio> 4 #include<cmath> 5 #include<cstdlib> 6 #include<cstring> 7 #include<cctype> 8 #include<queue> 9 #include<set> 10 #include<map> 11 #include<stack> 12 #include<vector> 13 #include<algorithm> 14 #ifdef WIN32 15 #define AUTO "%I64d" 16 #else 17 #define AUTO "%lld" 18 #endif 19 using namespace std; 20 typedef bool boolean; 21 #define smin(a, b) (a) = min((a), (b)) 22 #define smax(a, b) (a) = max((a), (b)) 23 template<typename T> 24 inline void readInteger(T& u){ 25 char x; 26 int aFlag = 1; 27 while(!isdigit((x = getchar())) && x != '-'); 28 if(x == '-'){ 29 aFlag = -1; 30 x = getchar(); 31 } 32 for(u = x - '0'; isdigit((x = getchar())); u = u * 10 + x - '0'); 33 ungetc(x, stdin); 34 u *= aFlag; 35 } 36 37 typedef class Edge { 38 public: 39 int end; 40 int next; 41 Edge(const int end = 0, const int next = 0):end(end), next(next){ } 42 }Edge; 43 44 typedef class MapManager{ 45 public: 46 int ce; 47 Edge* edges; 48 int* h; 49 MapManager():ce(0), edges(NULL), h(NULL){ } 50 MapManager(int points, int limit):ce(0){ 51 edges = new Edge[(const int)(limit + 1)]; 52 h = new int[(const int)(points + 1)]; 53 memset(h, 0, sizeof(int) * (points + 1)); 54 } 55 inline void addEdge(int from, int end){ 56 edges[++ce] = Edge(end, h[from]); 57 h[from] = ce; 58 } 59 inline void addDoubleEdge(int from, int end){ 60 addEdge(from, end); 61 addEdge(end, from); 62 } 63 Edge& operator [](int pos){ 64 return edges[pos]; 65 } 66 }MapManager; 67 #define m_begin(g, i) (g).h[(i)] 68 69 typedef class SegTreeNode{ 70 public: 71 long long sum; 72 int l, r; 73 SegTreeNode *left, *right; 74 long long lazy; 75 SegTreeNode(int l, int r):l(l), r(r), sum(0), lazy(0), left(NULL), right(NULL){ } 76 77 inline void pushUp(){ 78 this->sum = left->sum + right->sum; 79 } 80 81 inline void pushDown(){ 82 left->lazy += lazy; 83 right->lazy += lazy; 84 left->sum += lazy * (left->r - left->l + 1); 85 right->sum += lazy * (right->r - right->l + 1); 86 lazy = 0; 87 } 88 }SegTreeNode; 89 90 typedef class SegTree { 91 public: 92 SegTreeNode* root; 93 SegTree():root(NULL){ } 94 SegTree(int size) { 95 build(root, 1, size); 96 } 97 98 void build(SegTreeNode*& node, int l, int r){ 99 node = new SegTreeNode(l, r); 100 if(l == r) return; 101 int mid = (l + r) >> 1; 102 build(node->left, l, mid); 103 build(node->right, mid + 1, r); 104 } 105 106 void update(SegTreeNode*& node, int l, int r, int from, int end, long long val){ 107 if(l == from && r == end){ 108 node->sum += val * (r - l + 1); 109 node->lazy += val; 110 return; 111 } 112 if(node->lazy) node->pushDown(); 113 int mid = (l + r) >> 1; 114 if(end <= mid) update(node->left, l, mid, from, end, val); 115 else if(from > mid) update(node->right, mid + 1, r, from, end, val); 116 else{ 117 update(node->left, l, mid, from, mid, val); 118 update(node->right, mid + 1, r, mid + 1, end, val); 119 } 120 node->pushUp(); 121 } 122 123 long long query(SegTreeNode*& node, int index){ 124 if(node->l == index && node->r == index){ 125 return node->sum; 126 } 127 if(node->lazy) node->pushDown(); 128 int mid = (node->l + node->r) >> 1; 129 if(index <= mid) return query(node->left, index); 130 return query(node->right, index); 131 } 132 133 long long query(SegTreeNode*& node, int from, int end){ 134 if(node->l == from && node->r == end){ 135 return node->sum; 136 } 137 if(node->lazy) node->pushDown(); 138 int mid = (node->l + node->r) >> 1; 139 if(end <= mid) return query(node->left, from, end); 140 if(from > mid) return query(node->right, from, end); 141 return query(node->left, from, mid) + query(node->right, mid + 1, end); 142 } 143 }SegTree; 144 145 int n, m; 146 SegTree st; 147 int cnt = 0; 148 int* visitID; 149 int* exitID; 150 MapManager g; 151 152 inline void init() { 153 readInteger(n); 154 g = MapManager(n, 2 * n); 155 for(int i = 1, a, b; i < n; i++){ 156 readInteger(a); 157 readInteger(b); 158 g.addDoubleEdge(a, b); 159 } 160 visitID = new int[(const int)(n + 1)]; 161 exitID = new int[(const int)(n + 1)]; 162 } 163 164 void dfs(int node, int last){ 165 visitID[node] = ++cnt; 166 for(int i = m_begin(g, node); i != 0; i = g[i].next) { 167 int& e = g[i].end; 168 if(e == last) continue; 169 dfs(e, node); 170 } 171 exitID[node] = cnt; 172 } 173 174 inline void solve() { 175 dfs(1, 0); 176 readInteger(m); 177 st = SegTree(n); 178 char cmd[10]; 179 int a, b; 180 while(m--) { 181 scanf("%s", cmd); 182 readInteger(a); 183 if(cmd[0] == 'g') { 184 readInteger(b); 185 st.update(st.root, 1, n, visitID[a], exitID[a], b); 186 }else if(cmd[0] == 's'){ 187 long long res = st.query(st.root, visitID[a]); 188 printf(AUTO" ", res); 189 }else if(cmd[0] == 'a'){ 190 long long res = st.query(st.root, visitID[a], exitID[a]); 191 printf(AUTO" ", res); 192 } 193 } 194 } 195 196 int main() { 197 freopen("redpacket.in", "r", stdin); 198 freopen("redpacket.out", "w", stdout); 199 init(); 200 solve(); 201 return 0; 202 }
一看就发现是专为值域线段树设置的裸题。
Code
1 #include<iostream> 2 #include<sstream> 3 #include<cstdio> 4 #include<cmath> 5 #include<cstdlib> 6 #include<cstring> 7 #include<cctype> 8 #include<queue> 9 #include<set> 10 #include<map> 11 #include<stack> 12 #include<vector> 13 #include<algorithm> 14 #ifndef WIN32 15 #define AUTO "%I64d" 16 #else 17 #define AUTO "%lld" 18 #endif 19 using namespace std; 20 typedef bool boolean; 21 #define smin(a, b) (a) = min((a), (b)) 22 #define smax(a, b) (a) = max((a), (b)) 23 template<typename T> 24 inline void readInteger(T& u){ 25 char x; 26 int aFlag = 1; 27 while(!isdigit((x = getchar())) && x != '-'); 28 if(x == '-'){ 29 aFlag = -1; 30 x = getchar(); 31 } 32 for(u = x - '0'; isdigit((x = getchar())); u = u * 10 + x - '0'); 33 ungetc(x, stdin); 34 u *= aFlag; 35 } 36 37 typedef class SegTreeNode { 38 public: 39 int s; 40 SegTreeNode* left, *right; 41 42 inline void pushUp(){ 43 s = left->s + right->s; 44 } 45 }SegTreeNode; 46 47 typedef class SegTree { 48 public: 49 int lb, rb; 50 SegTreeNode* root; 51 SegTree():root(NULL) { } 52 SegTree(int lb, int rb, int* list):lb(lb), rb(rb){ 53 build(root, 1, rb - lb + 1, list); 54 } 55 56 void build(SegTreeNode*& node, int l, int r, int* list){ 57 node = new SegTreeNode(); 58 if(l == r){ 59 node->s = list[l]; 60 return; 61 } 62 int mid = (l + r) >> 1; 63 build(node->left, l, mid, list); 64 build(node->right, mid + 1, r, list); 65 node->pushUp(); 66 } 67 68 void update(SegTreeNode*& node, int l, int r, int index, int val){ 69 if(l == index && r == index){ 70 node->s += val; 71 smax(node->s, 0); 72 return; 73 } 74 int mid = (l + r) >> 1; 75 if(index <= mid) update(node->left, l, mid, index, val); 76 else update(node->right, mid + 1, r, index, val); 77 node->pushUp(); 78 } 79 80 int findKth(SegTreeNode*& node, int l, int r, int k){ 81 if(l == r) return l + lb - 1; 82 int ls = node->left->s; 83 int mid = (l + r) >> 1; 84 if(k <= ls) return findKth(node->left, l, mid, k); 85 return findKth(node->right, mid + 1, r, k - ls); 86 } 87 }SegTree; 88 89 int n; 90 int lb, rb; 91 int* list; 92 SegTree st; 93 inline void init() { 94 readInteger(lb); 95 readInteger(rb); 96 list = new int[(const int)(rb - lb + 2)]; 97 for(int i = lb; i <= rb; i++){ 98 readInteger(list[i - lb + 1]); 99 } 100 st = SegTree(lb, rb, list); 101 } 102 103 inline void solve() { 104 const int L = rb - lb + 1; 105 readInteger(n); 106 char cmd[10]; 107 int a; 108 while(n--) { 109 scanf("%s", cmd); 110 readInteger(a); 111 if(cmd[0] == 'a'){ 112 st.update(st.root, 1, L, a - lb + 1, 1); 113 }else if(cmd[0] == 'd'){ 114 st.update(st.root, 1, L, a - lb + 1, -1); 115 }else{ 116 int res = st.findKth(st.root, 1, L, a); 117 printf("%d ", res); 118 } 119 } 120 } 121 122 int main(){ 123 freopen("kth.in", "r", stdin); 124 freopen("kth.out", "w", stdout); 125 init(); 126 solve(); 127 return 0; 128 }
然后我还用了替罪羊树(然而发现,都快成普通的二叉搜索树了),O(n)离线建完整棵树,插入删除都不需要重构,即使为count为0也不管(删掉它需要花费更过的时间)。不过测了后发现,略微比值域线段树快一点,应该是因为各种操作在中途完成就开始返回了。
Code
1 #include<iostream> 2 #include<sstream> 3 #include<cstdio> 4 #include<cmath> 5 #include<cstdlib> 6 #include<cstring> 7 #include<cctype> 8 #include<queue> 9 #include<set> 10 #include<map> 11 #include<stack> 12 #include<vector> 13 #include<algorithm> 14 #ifndef WIN32 15 #define AUTO "%I64d" 16 #else 17 #define AUTO "%lld" 18 #endif 19 using namespace std; 20 typedef bool boolean; 21 #define smin(a, b) (a) = min((a), (b)) 22 #define smax(a, b) (a) = max((a), (b)) 23 template<typename T> 24 inline void readInteger(T& u){ 25 char x; 26 int aFlag = 1; 27 while(!isdigit((x = getchar())) && x != '-'); 28 if(x == '-'){ 29 aFlag = -1; 30 x = getchar(); 31 } 32 for(u = x - '0'; isdigit((x = getchar())); u = u * 10 + x - '0'); 33 ungetc(x, stdin); 34 u *= aFlag; 35 } 36 37 template<typename T> 38 class ScapegoatTreeNode { 39 public: 40 T val; 41 int count; 42 int size; 43 ScapegoatTreeNode* next[2]; 44 ScapegoatTreeNode():count(1), size(1){ 45 memset(next, 0, sizeof(next)); 46 } 47 ScapegoatTreeNode(T val):val(val), count(1), size(1){ 48 memset(next, 0, sizeof(next)); 49 } 50 51 inline void maintain() { 52 size = count; 53 for(int i = 0; i < 2; i++) 54 if(next[i] != NULL) 55 size += next[i]->size; 56 } 57 58 inline void addCount(int c){ 59 if(count == 0 && c < 0) return; 60 size += c, count += c; 61 } 62 63 inline int cmp(T x){ 64 if(val == x) return -1; 65 return (x < val) ? (0) : (1); 66 } 67 }; 68 69 template<typename T> 70 class ScapegoatTree { 71 protected: 72 static void insert(ScapegoatTreeNode<T>*& node, T val){ 73 if(node == NULL){ 74 node = new ScapegoatTreeNode<T>(val); 75 return; 76 } 77 int d = node->cmp(val); 78 if(d == -1){ 79 node->addCount(1); 80 return; 81 } 82 insert(node->next[d], val); 83 node->maintain(); 84 } 85 86 static boolean remove(ScapegoatTreeNode<T>*& node, T val){ 87 if(node == NULL) return false; 88 int d = node->cmp(val); 89 if(d == -1){ 90 node->addCount(-1); 91 return true; 92 } 93 boolean res = remove(node->next[d], val); 94 if(res) node->maintain(); 95 return res; 96 } 97 98 static ScapegoatTreeNode<T>* findKth(ScapegoatTreeNode<T>*& node, int k){ 99 int ls = (node->next[0] == NULL) ? (0) : (node->next[0]->size); 100 if(k >= ls + 1 && k <= ls + node->count) return node; 101 if(k <= ls) return findKth(node->next[0], k); 102 return findKth(node->next[1], k - ls - node->count); 103 } 104 public: 105 ScapegoatTreeNode<T>* root; 106 vector<ScapegoatTreeNode<T>*> lis; 107 108 ScapegoatTree():root(NULL){ } 109 110 ScapegoatTreeNode<T>* rebuild(int l, int r){ 111 if(l > r) return NULL; 112 int mid = (l + r) >> 1; 113 ScapegoatTreeNode<T>*& node = lis[mid]; 114 node->next[0] = rebuild(l, mid - 1); 115 node->next[1] = rebuild(mid + 1, r); 116 node->maintain(); 117 return node; 118 } 119 120 void rebuild(ScapegoatTreeNode<T>*& node, ScapegoatTreeNode<T>*& f){ 121 lis.clear(); 122 travel(node); 123 int d = -1; 124 if(f != NULL) d = f->cmp(node->val); 125 ScapegoatTreeNode<T>* res = rebuild(0, lis.size() - 1); 126 if(d != -1) f->next[d] = res; 127 else root = res; 128 } 129 130 void insert(T val){ 131 insert(root, val); 132 } 133 134 void remove(T val){ 135 remove(root, val); 136 } 137 138 ScapegoatTreeNode<T>* findKth(int k){ 139 return findKth(root, k); 140 } 141 }; 142 143 int n; 144 int lb, rb; 145 ScapegoatTree<int> s; 146 147 inline void init() { 148 readInteger(lb); 149 readInteger(rb); 150 for(int i = lb; i <= rb; i++){ 151 ScapegoatTreeNode<int>* node = new ScapegoatTreeNode<int>(i); 152 readInteger(node->count); 153 node->maintain(); 154 s.lis.push_back(node); 155 } 156 s.root = s.rebuild(0, s.lis.size() - 1); 157 } 158 159 inline void solve() { 160 readInteger(n); 161 char cmd[10]; 162 int a; 163 while(n--) { 164 scanf("%s", cmd); 165 readInteger(a); 166 if(cmd[0] == 'a'){ 167 s.insert(a); 168 }else if(cmd[0] == 'd'){ 169 s.remove(a); 170 }else{ 171 ScapegoatTreeNode<int>* node = s.findKth(a); 172 printf("%d ", node->val); 173 } 174 } 175 } 176 177 int main(){ 178 freopen("kth.in", "r", stdin); 179 freopen("kth.out", "w", stdout); 180 init(); 181 solve(); 182 return 0; 183 }