zoukankan      html  css  js  c++  java
  • Codeforces 438D The Child and Sequence

    At the children's day, the child came to Picks's house, and messed his house up. Picks was angry at him. A lot of important things were lost, in particular the favorite sequence of Picks.

    Fortunately, Picks remembers how to repair the sequence. Initially he should create an integer array a[1], a[2], ..., a[n]. Then he should perform a sequence of m operations. An operation can be one of the following:

    1. Print operation l, r. Picks should write down the value of .
    2. Modulo operation l, r, x. Picks should perform assignment a[i] = a[imod x for each i (l ≤ i ≤ r).
    3. Set operation k, x. Picks should set the value of a[k] to x (in other words perform an assignment a[k] = x).

    Can you help Picks to perform the whole sequence of operations?

    Input

    The first line of input contains two integer: n, m (1 ≤ n, m ≤ 105). The second line contains n integers, separated by space: a[1], a[2], ..., a[n] (1 ≤ a[i] ≤ 109) — initial value of array elements.

    Each of the next m lines begins with a number type .

    • If type = 1, there will be two integers more in the line: l, r (1 ≤ l ≤ r ≤ n), which correspond the operation 1.
    • If type = 2, there will be three integers more in the line: l, r, x (1 ≤ l ≤ r ≤ n; 1 ≤ x ≤ 109), which correspond the operation 2.
    • If type = 3, there will be two integers more in the line: k, x (1 ≤ k ≤ n; 1 ≤ x ≤ 109), which correspond the operation 3.
    Output

    For each operation 1, please print a line containing the answer. Notice that the answer may exceed the 32-bit integer.

    Examples
    Input
    5 5 1 2 3 4 5 2 3 5 4 3 3 5 1 2 5 2 1 3 3 1 1 3
    Output
    8 5
    Input
    10 10 6 9 6 7 6 1 10 10 9 5 1 3 9 2 7 10 9 2 5 10 8 1 4 7 3 3 7 2 7 9 9 1 2 4 1 6 6 1 5 9 3 1 10
    Output
    49 15 23 1 9
    Note

    Consider the first testcase:

    • At first, a = {1, 2, 3, 4, 5}.
    • After operation 1, a = {1, 2, 3, 0, 1}.
    • After operation 2, a = {1, 2, 5, 0, 1}.
    • At operation 3, 2 + 5 + 0 + 1 = 8.
    • After operation 4, a = {1, 2, 2, 0, 1}.
    • At operation 5, 1 + 2 + 2 = 5.

      题目大意 维护一个数列,有3种操作,分别是区间求和,区间取模和单点修改。

      显然线段树(请不要问我为什么。。。学长的Tag打在那儿的)

      区间求和和单点修改都是线段树的拿手好戏,但是对于区间取模似乎不是那么好做。考虑可以区间批量更新sum吗?显然不行。

      但是考虑到这里只有单点修改,而且对一个大于模数的数取模,它的值至多为它原来的值的一半。

      所以区间记录一个最大值剪枝,每次区间取模先判断是否有必要进行递归取模,如果有,就暴力递归下去,在底层修改。

    Code

      1 /**
      2  * Codeforces
      3  * Problem#438D
      4  * Accepted
      5  * Time: 436ms
      6  * Memory: 8740k
      7  */
      8 #include <bits/stdc++.h>
      9 #ifndef WIN32
     10 #define Auto "%lld"
     11 #else
     12 #define Auto "%I64d"
     13 #endif
     14 using namespace std;
     15 
     16 typedef class SegTreeNode {
     17     public:
     18         int maxv;
     19         long long sum;
     20         SegTreeNode *l, *r;
     21         
     22         SegTreeNode():maxv(0), sum(0), l(NULL), r(NULL) {        }
     23         
     24         inline void pushUp() {
     25             maxv = max(l->maxv, r->maxv);
     26             sum = l->sum + r->sum; 
     27         }
     28 }SegTreeNode;
     29 
     30 typedef class SegTree {
     31     public:
     32         SegTreeNode* root;
     33         
     34         SegTree():root(NULL) {        }
     35         SegTree(int n, int* a) {
     36             build(root, 1, n, a);
     37         }
     38         
     39         void build(SegTreeNode*& node, int l, int r, int* a) {
     40             node = new SegTreeNode();
     41             if(l == r) {
     42                 node->sum = node->maxv = a[l];
     43                 return;
     44             }
     45             int mid = (l + r) >> 1;
     46             build(node->l, l, mid, a);
     47             build(node->r, mid + 1, r, a);
     48             node->pushUp();
     49         }
     50         
     51         void update(SegTreeNode*& node, int l, int r, int idx, int val) {
     52             if(l == r) {
     53                 node->maxv = node->sum = val;
     54                 return;
     55             }
     56             int mid = (l + r) >> 1;
     57             if(idx <= mid)    update(node->l, l, mid, idx, val);
     58             else update(node->r, mid + 1, r, idx, val);
     59             node->pushUp();
     60         }
     61         
     62         void update(SegTreeNode*& node, int l, int r, int ql, int qr, int moder) {
     63             if(l == r) {
     64                 node->maxv = (node->sum %= moder);
     65                 return;
     66             }
     67             int mid = (l + r) >> 1;
     68             if(qr <= mid && node->l->maxv >= moder)    update(node->l, l, mid, ql, qr, moder);
     69             else if(ql > mid && node->r->maxv >= moder)    update(node->r, mid + 1, r, ql, qr, moder);
     70             else if(qr > mid && ql <= mid) {
     71                 if(node->l->maxv >= moder)
     72                     update(node->l, l, mid, ql, mid, moder);
     73                 if(node->r->maxv >= moder)
     74                     update(node->r, mid + 1, r, mid + 1, qr, moder);
     75             }
     76             node->pushUp();
     77         }
     78         
     79         long long query(SegTreeNode*& node, int l, int r, int ql, int qr) {
     80             if(l == ql && r == qr) {
     81                 return node->sum;
     82             }
     83             int mid = (l + r) >> 1;
     84             if(qr <= mid)    return query(node->l, l, mid, ql, qr);
     85             if(ql > mid)    return query(node->r, mid + 1, r, ql, qr);
     86                 return query(node->l, l, mid, ql, mid) + query(node->r, mid + 1, r, mid + 1, qr);
     87             }              
     88 }SegTree;              
     89                        
     90 int n, m;              
     91 int* arr;              
     92 SegTree st;            
     93 inline void init() {
     94     scanf("%d%d", &n, &m);
     95     arr = new int[(n + 1)];
     96     for(int i = 1; i <= n; i++)
     97         scanf("%d", arr + i);
     98     st = SegTree(n, arr);
     99 }                      
    100 
    101 inline void solve() {
    102     int opt, a, b, c;
    103     while(m--) {
    104         scanf("%d%d%d", &opt, &a, &b);
    105         if(opt == 1) {
    106             printf(Auto"
    ", st.query(st.root, 1, n, a, b));
    107         } else if(opt == 2) {
    108             scanf("%d", &c);
    109             st.update(st.root, 1, n, a, b, c);
    110         } else {
    111             st.update(st.root, 1, n, a, b);
    112         }
    113     }
    114 }
    115 
    116 int main() {
    117     init();
    118     solve();
    119     return 0;
    120 }
  • 相关阅读:
    PPT幻灯片放映不显示备注,只让备注显示在自己屏幕上
    Available Date 相关
    App Store常用推广方法
    iPhone应用提交流程:如何将App程序发布到App Store-转
    [转]关于适配iphone5,Invalid Launch Image的退信
    NSLog 不打印中文 - 解决
    Xcode GDB 调试
    xcode找不到真机设备 - 转
    使用静态库的一些问题 -all_load
    [深入浅出iOS库]之图形库CorePlot
  • 原文地址:https://www.cnblogs.com/yyf0309/p/7268176.html
Copyright © 2011-2022 走看看