zoukankan      html  css  js  c++  java
  • bzoj 1818 [CQOI 2010] 内部白点

    题目传送门

      快速的列车

      慢速的列车

    题目大意

      一个无限大的方格图内有$n$个黑点。问有多少个位置上下左右至少有一个黑点或本来是黑点。

      扫描线是显然的。

      考虑一下横着的线段,取它两个端点,横坐标小的地方放一个+1,大的地方放一个-1事件。

      然后扫描,扫到的横着的线段更新,竖着的线段用树状数组求答案。

      然后考虑这一列上原来存在的黑点有没有被统计,如果没有就加上。

    Code

      1 /**
      2  * bzoj
      3  * Problem#1818
      4  * Accepted
      5  * Time: 1824ms
      6  * Memory: 9776k
      7  */
      8 #include <algorithm>
      9 #include <iostream>
     10 #include <cstdlib>
     11 #include <cstring>
     12 #include <cstdio>
     13 #include <vector>
     14 #ifndef WIN32
     15 #define Auto "%lld"
     16 #else
     17 #define Auto "%I64d"
     18 #endif
     19 using namespace std;
     20 #define smax(a, b) (a = max(a, b))
     21 #define smin(a, b) (a = min(a, b))
     22 typedef bool boolean;
     23 #define ll long long
     24 
     25 const int N = 1e5 + 5;
     26 
     27 typedef class IndexedTree {
     28     public:
     29         int s;
     30         int* ar;
     31         
     32         IndexedTree() {    }
     33         IndexedTree(int s):s(s) {
     34             ar = new int[(s + 1)];
     35             memset(ar, 0, sizeof(int) * (s + 1));
     36         }
     37 
     38         void add(int idx, int val) {
     39             for ( ; idx <= s; idx += (idx & (-idx)))
     40                 ar[idx] += val;
     41         }
     42 
     43         int query(int idx) {
     44             int rt = 0;
     45             for ( ; idx; idx -= (idx & (-idx)))
     46                 rt += ar[idx];
     47             return rt;
     48         }
     49 }IndexedTree;
     50 
     51 typedef class Event {
     52     public:
     53         int x, y, val;
     54 
     55         Event(int x = 0, int y = 0, int val = 0):x(x), y(y), val(val) {    }
     56 
     57         boolean operator < (Event b) const {
     58             return x < b.x;
     59         }
     60 }Event;
     61 
     62 int n;
     63 int xs[N], ys[N], bxs[N], bys[N];
     64 int ls[N], rs[N], us[N], ds[N];
     65 ll res = 0;
     66 int tp = 0;
     67 Event es[N << 1];
     68 vector<int> vs[N];
     69 IndexedTree it;
     70 
     71 inline void init() {
     72     scanf("%d", &n);
     73     for (int i = 1; i <= n; i++)
     74         scanf("%d%d", xs + i, ys + i);
     75 }
     76 
     77 inline void descrete(int* ar, int* br, int n) {
     78     memcpy(br, ar, sizeof(int) * (n + 1));
     79     sort(br + 1, br + n + 1);
     80     for (int i = 1; i <= n; i++)
     81         ar[i] = lower_bound(br + 1, br + n + 1, ar[i]) - br;
     82 }
     83 
     84 inline void solve() {
     85     descrete(xs, bxs, n);
     86     descrete(ys, bys, n);
     87     
     88     for (int i = 1; i <= n; i++)
     89         ls[i] = ds[i] = N;
     90     for (int i = 1; i <= n; i++)
     91         us[i] = rs[i] = 0;
     92 
     93     for (int i = 1; i <= n; i++) {
     94         smin(ls[ys[i]], xs[i]);
     95         smax(rs[ys[i]], xs[i]);
     96         smin(ds[xs[i]], ys[i]);
     97         smax(us[xs[i]], ys[i]);
     98     }
     99     
    100     for (int i = 1; i <= n; i++)
    101         vs[xs[i]].push_back(ys[i]);
    102 
    103     for (int i = 1; i <= n; i++)
    104         if (ls[i] < rs[i] - 1) {
    105             es[++tp] = Event(ls[i], i, 1);
    106             es[++tp] = Event(rs[i], i, -1);
    107         }
    108     sort(es + 1, es + tp + 1);
    109 
    110     int pe = 1;
    111     it = IndexedTree(n);
    112     bxs[0] = -1e9 - 5;
    113     for (int i = 1; i <= n; i++) {
    114         if (bxs[i] == bxs[i - 1])    continue;
    115         while (pe <= tp && es[pe].x == i)
    116             it.add(es[pe].y, es[pe].val), pe++;
    117         if (ds[i] <= us[i])
    118             res += it.query(us[i]) - it.query(ds[i] - 1);//, cerr << bxs[i] << endl;
    119         for (int j = 0; j < (signed) vs[i].size(); j++)
    120             if (it.query(vs[i][j]) - it.query(vs[i][j] - 1) == 0)
    121                 res++;
    122 //        cerr << bxs[i] << " " << res << endl;
    123     }
    124     printf(Auto"
    ", res);
    125 }
    126 
    127 int main() {
    128     init();
    129     solve();
    130     return 0;
    131 }
  • 相关阅读:
    建造者模式
    模板方法模式
    抽象工厂模式
    工厂方法模式
    Josephus环问题
    单例模式
    求两个数的最大公约数
    Nginx的安装与部署
    左京大夫显辅
    java 调用第三方系统时的连接代码-记录
  • 原文地址:https://www.cnblogs.com/yyf0309/p/9393016.html
Copyright © 2011-2022 走看看