zoukankan      html  css  js  c++  java
  • poj 2155:Matrix(二维线段树,矩阵取反,好题)

    Matrix
    Time Limit: 3000MS   Memory Limit: 65536K
    Total Submissions: 17880   Accepted: 6709

    Description

    Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1 <= i, j <= N). 

    We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a '0' then change it into '1' otherwise change it into '0'). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions. 

    1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2). 
    2. Q x y (1 <= x, y <= n) querys A[x, y]. 

    Input

    The first line of the input is an integer X (X <= 10) representing the number of test cases. The following X blocks each represents a test case. 

    The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2 y2", which has been described above. 

    Output

    For each querying output one line, which has an integer representing A[x, y]. 

    There is a blank line between every two continuous test cases. 

    Sample Input

    1
    2 10
    C 2 1 2 2
    Q 2 2
    C 2 1 2 1
    Q 1 1
    C 1 1 2 1
    C 1 2 1 2
    C 1 1 2 2
    Q 1 1
    C 1 1 2 1
    Q 2 1
    

    Sample Output

    1
    0
    0
    1
    

    Source

    POJ Monthly,Lou Tiancheng
     
      二维线段树,矩阵取反,好题
     
      题意
      
      思路
      矩阵节点的值为是否取反,0为不取反,1为取反,暂称为取反值。
      取反操作的时候先找到这个矩阵代表的节点,然后将这个节点的值+1再模2,即取反。
      查询的时候,将(x,y)这个坐标经过的所有矩阵的取反值加起来,每次%2,最后那个值就为这个坐标最后的值。
      为什么%2,因为不是1就是0,矩阵记录了取反值,找这个坐标的过程中,经过的矩阵如果取反值为1,则结果变为0,在经过一个取反值为1的矩阵,结果又变为1…… 直到加到要找的坐标的取反值,这个结果记录的值就是这个坐标的取反值。这个时候输出结果。
     
      代码
     1 #include <iostream>
     2 #include <stdio.h>
     3 #include <string.h>
     4 using namespace std;
     5 
     6 #define MAXN 1100
     7 
     8 int tree[MAXN*3][MAXN*3],s;
     9 
    10 void Negate_y(int d,int dy,int L,int R,int y1,int y2)    //取反操作
    11 {    
    12     if(L==y1 && R==y2){    //将这个矩阵的所有元素记录为取反
    13         tree[d][dy] = (tree[d][dy]+1) % 2;
    14         return ;
    15     }
    16 
    17     int mid = (L+R)>>1;
    18     if(mid>=y2)
    19         Negate_y(d,dy<<1,L,mid,y1,y2);
    20     else if(mid<y1)
    21         Negate_y(d,dy<<1|1,mid+1,R,y1,y2);
    22     else{
    23         Negate_y(d,dy<<1,L,mid,y1,mid);
    24         Negate_y(d,dy<<1|1,mid+1,R,mid+1,y2);
    25     }
    26 }
    27 
    28 void Negate_x(int d,int L,int R,int x1,int y1,int x2,int y2)        //取反操作
    29 {
    30     if(L==x1 && R==x2){    //找到行块
    31         Negate_y(d,1,1,s,y1,y2);    
    32         return ;
    33     }
    34 
    35     int mid = (L+R)>>1;
    36     if(mid>=x2)
    37         Negate_x(d<<1,L,mid,x1,y1,x2,y2);
    38     else if(mid<x1)
    39         Negate_x(d<<1|1,mid+1,R,x1,y1,x2,y2);
    40     else{
    41         Negate_x(d<<1,L,mid,x1,y1,mid,y2);
    42         Negate_x(d<<1|1,mid+1,R,mid+1,y1,x2,y2);
    43     }
    44 }
    45 
    46 
    47 int Query_y(int d,int dy,int L,int R,int r)    //查询
    48 {
    49     if(L==R)    //找到要找的坐标,输出这个坐标对应的值
    50         return tree[d][dy];
    51 
    52     //没找到
    53     int mid = (L+R)>>1;
    54     if(mid >= r)
    55         return (Query_y(d,dy<<1,L,mid,r)+tree[d][dy]) % 2;
    56     else
    57         return (Query_y(d,dy<<1|1,mid+1,R,r)+tree[d][dy]) % 2;
    58 }
    59 
    60 int Query_x(int d,int L,int R,int l,int r)    //查询
    61 {
    62     if(L==R){    //找到要找的行块,继续查找列块
    63         return Query_y(d,1,1,s,r);
    64     }
    65 
    66     //没找到
    67     int mid = (L+R)>>1;
    68     if(mid >= l)
    69         return (Query_x(d<<1,L,mid,l,r) + Query_y(d,1,1,s,r)) % 2;
    70     else
    71         return (Query_x(d<<1|1,mid+1,R,l,r) + Query_y(d,1,1,s,r)) % 2;
    72 }
    73 
    74 int main()
    75 {
    76     int X,T,x,y,x1,y1,x2,y2;
    77     scanf("%d",&X);
    78     while(X--){
    79         memset(tree,0,sizeof(tree));
    80         scanf("%d%d",&s,&T);
    81         while(T--){
    82             char c[5];
    83             scanf("%s",c);
    84             if(c[0]=='C'){
    85                 scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
    86                 Negate_x(1,1,s,x1,y1,x2,y2);
    87             }
    88             else if(c[0]=='Q'){
    89                 scanf("%d%d",&x,&y);
    90                 printf("%d
    ",Query_x(1,1,s,x,y));
    91             }
    92         }
    93         if(X!=0)
    94             printf("
    ");
    95     }
    96 
    97     return 0;
    98 }

    Freecode : www.cnblogs.com/yym2013

  • 相关阅读:
    js生成当前时间
    《JavaScript权威指南》读书笔记2
    firefox与ie的兼容(css,html)
    兼容ie ff 等浏览器的jquery,js层移动方法一
    解决文字撑大容器的方法,ie,ff, div,table
    兼容ie ff 等浏览器的jquery,js层移动方法二
    【CSS经典问题】子元素浮动之后如何撑开父元素
    【CSS技巧】列表横向排列的另一种方法
    【CSS经典问题】图片下面有空隙的解决办法
    MYSQL主从复制、主主复制、双主多从配置
  • 原文地址:https://www.cnblogs.com/yym2013/p/3854331.html
Copyright © 2011-2022 走看看