zoukankan      html  css  js  c++  java
  • spark2.3 SQL内置函数——Date window functions

    1. def cume_dist()Column

    –CUME_DIST 小于等于当前值的行数/分组内总行数
    –比如,统计小于等于当前薪水的人数,所占总人数的比例

    d1,user1,1000
    d1,user2,2000
    d1,user3,3000
    d2,user4,4000
    d2,user5,5000
    
    df.withColumn("rn1",cume_dist().over(Window.partitionBy(col("dept")).orderBy(col("sal")))).show()
    
    dept    userid   sal       rn1 
    -------------------------------------------
    d1      user1   1000      0.3333333333333333
    d1      user2   2000      0.6666666666666666
    d1      user3   3000      1.0
    d2      user4   4000      0.5
    d2      user5   5000      1.0
    
    rn1: 按照部门分组,dpet=d1的行数为3,
         第二行:小于等于2000的行数为2,因此,2/3=0.6666666666666666
    

    2.def percent_rank()Column

    –PERCENT_RANK 分组内当前行的RANK值-1/分组内总行数-1
    应用场景不了解,可能在一些特殊算法的实现中可以用到吧。

    d1,user1,1000
    d1,user2,2000
    d1,user3,3000
    d2,user4,4000
    d2,user5,5000
     
    df.withColumn("rn1",percent_rank().over(Window.partitionBy(col("dept")).orderBy(col("sal")))).show()
    
    dept    userid   sal      rn1
    -----------------------------
    d1      user1   1000    0.0
    d1      user2   2000    0.5
    d1      user3   3000    1.0
    d2      user4   4000    0.0
    d2      user5   5000    1.0

    3.def ntile(n: Int)Column

    NTILE(n),用于将分组数据按照顺序切分成n片,返回当前切片值
    NTILE不支持ROWS BETWEEN,比如 NTILE(2) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW)
    如果切片不均匀,默认增加第一个切片的分布

    cookie1 2015-04-10      1
    cookie1 2015-04-11      5
    cookie1 2015-04-12      7
    cookie1 2015-04-13      3
    cookie1 2015-04-14      2
    cookie1 2015-04-15      4
    cookie1 2015-04-16      4
    cookie2 2015-04-10      2
    cookie2 2015-04-11      3
    cookie2 2015-04-12      5
    cookie2 2015-04-13      6
    cookie2 2015-04-14      3
    cookie2 2015-04-15      9
    cookie2 2015-04-16      7
    
    df.withColumn("rn",ntile(3).over(Window.partitionBy(col("cookieid")).orderBy(col("createtime")))).show()
    
    比如,统计一个cookie,pv数最多的前1/3的天
    
    --rn = 1 的记录,就是我们想要的结果
     
    cookieid day           pv       rn
    ----------------------------------
    cookie1 2015-04-12      7       1
    cookie1 2015-04-11      5       1
    cookie1 2015-04-15      4       1
    cookie1 2015-04-16      4       2
    cookie1 2015-04-13      3       2
    cookie1 2015-04-14      2       3
    cookie1 2015-04-10      1       3
    cookie2 2015-04-15      9       1
    cookie2 2015-04-16      7       1
    cookie2 2015-04-13      6       1
    cookie2 2015-04-12      5       2
    cookie2 2015-04-14      3       2
    cookie2 2015-04-11      3       3
    cookie2 2015-04-10      2       3

    4. def row_number()Column

    ROW_NUMBER() –从1开始,按照顺序,生成分组内记录的序列

    row_number(): 不考虑数据的重复性 按照顺序一次打上标号 : 如: 1,2,3,4

    –比如,按照pv降序排列,生成分组内每天的pv名次
    ROW_NUMBER() 的应用场景非常多,再比如,获取分组内排序第一的记录;获取一个session中的第一条refer等。

    cookie1 2015-04-10      1
    cookie1 2015-04-11      5
    cookie1 2015-04-12      7
    cookie1 2015-04-13      3
    cookie1 2015-04-14      2
    cookie1 2015-04-15      4
    cookie1 2015-04-16      4
    cookie2 2015-04-10      2
    cookie2 2015-04-11      3
    cookie2 2015-04-12      5
    cookie2 2015-04-13      6
    cookie2 2015-04-14      3
    cookie2 2015-04-15      9
    cookie2 2015-04-16      7
    
    df.withColumn("rn",ROW_NUMBER().over(Window.partitionBy(col("cookieid")).orderBy(col("pv").desc))).show()
    
    cookieid day           pv       rn
    ------------------------------------------- 
    cookie1 2015-04-12      7       1
    cookie1 2015-04-11      5       2
    cookie1 2015-04-15      4       3
    cookie1 2015-04-16      4       4
    cookie1 2015-04-13      3       5
    cookie1 2015-04-14      2       6
    cookie1 2015-04-10      1       7
    cookie2 2015-04-15      9       1
    cookie2 2015-04-16      7       2
    cookie2 2015-04-13      6       3
    cookie2 2015-04-12      5       4
    cookie2 2015-04-14      3       5
    cookie2 2015-04-11      3       6
    cookie2 2015-04-10      2       7
    

    5. def rank()Column

    —RANK() 生成数据项在分组中的排名,排名相等会在名次中留下空位

    rank() :考虑数据的重复性,挤占坑位,如:1,2,2,4

    cookie1 2015-04-10      1
    cookie1 2015-04-11      5
    cookie1 2015-04-12      7
    cookie1 2015-04-13      3
    cookie1 2015-04-14      2
    cookie1 2015-04-15      4
    cookie1 2015-04-16      4
    cookie2 2015-04-10      2
    cookie2 2015-04-11      3
    cookie2 2015-04-12      5
    cookie2 2015-04-13      6
    cookie2 2015-04-14      3
    cookie2 2015-04-15      9
    cookie2 2015-04-16      7
    
    df.withColumn("rn1",RANK().over(Window.partitionBy(col("cookieid")).orderBy(col("pv").desc))).show()
    
    cookieid day           pv       rn1    
    --------------------------------------
    cookie1 2015-04-12      7       1    
    cookie1 2015-04-11      5       2    
    cookie1 2015-04-15      4       3     
    cookie1 2015-04-16      4       3     
    cookie1 2015-04-13      3       5     
    cookie1 2015-04-14      2       6     
    cookie1 2015-04-10      1       7    
    
    rn1: 15号和16号并列第3, 13号排第5
    6. def dense_rank() Column

    DENSE_RANK() 生成数据项在分组中的排名,排名相等会在名次中不会留下空位

    dense_rank() : 考虑数据重复性 不挤占坑位,如:1,2,2,3

    cookie1 2015-04-10      1
    cookie1 2015-04-11      5
    cookie1 2015-04-12      7
    cookie1 2015-04-13      3
    cookie1 2015-04-14      2
    cookie1 2015-04-15      4
    cookie1 2015-04-16      4
    cookie2 2015-04-10      2
    cookie2 2015-04-11      3
    cookie2 2015-04-12      5
    cookie2 2015-04-13      6
    cookie2 2015-04-14      3
    cookie2 2015-04-15      9
    cookie2 2015-04-16      7
    
    df.withColumn("rn1",DENSE_RANK().over(Window.partitionBy(col("cookieid")).orderBy(col("pv").desc))).show()
    
    cookieid day           pv           rn1   
    --------------------------------------------
    cookie1 2015-04-12      7        1   
    cookie1 2015-04-11      5        2   
    cookie1 2015-04-15      4        3   
    cookie1 2015-04-16      4        3    
    cookie1 2015-04-13      3        4   
    cookie1 2015-04-14      2        5     
    cookie1 2015-04-10      1        6   

    rn2: 15号和16号并列第3, 13号排第4

     7. def lag(e: Column, offset: Int, defaultValue: Any)Column

    LAG(col,n,DEFAULT) 用于统计窗口内往上第n行值
    第一个参数为列名,第二个参数为往上第n行(可选,默认为1),第三个参数为默认值(当往上第n行为NULL时候,取默认值,如不指定,则为NULL)

    cookie1 2015-04-10 10:00:02     url2
    cookie1 2015-04-10 10:00:00     url1
    cookie1 2015-04-10 10:03:04     1url3
    cookie1 2015-04-10 10:50:05     url6
    cookie1 2015-04-10 11:00:00     url7
    cookie1 2015-04-10 10:10:00     url4
    cookie1 2015-04-10 10:50:01     url5
    cookie2 2015-04-10 10:00:02     url22
    cookie2 2015-04-10 10:00:00     url11
    cookie2 2015-04-10 10:03:04     1url33
    cookie2 2015-04-10 10:50:05     url66
    cookie2 2015-04-10 11:00:00     url77
    cookie2 2015-04-10 10:10:00     url44
    cookie2 2015-04-10 10:50:01     url55
    
    df.withColumn("rn1",lag(col("createtime"),1,"1970-01-01 00:00:00").over(Window.partitionBy(col("cookieid")).orderBy(col("createtime"))).as("last_1_time,")).withColumn("rn1",lag(col("createtime"),2,"1970-01-01 00:00:00").over(Window.partitionBy(col("cookieid")).orderBy(col("createtime"))).as("last_2_time,")).show()
    
    cookieid createtime             url    rn       last_1_time             last_2_time
    -------------------------------------------------------------------------------------------
    cookie1 2015-04-10 10:00:00     url1    1       1970-01-01 00:00:00     NULL
    cookie1 2015-04-10 10:00:02     url2    2       2015-04-10 10:00:00     NULL
    cookie1 2015-04-10 10:03:04     1url3   3       2015-04-10 10:00:02     2015-04-10 10:00:00
    cookie1 2015-04-10 10:10:00     url4    4       2015-04-10 10:03:04     2015-04-10 10:00:02
    cookie1 2015-04-10 10:50:01     url5    5       2015-04-10 10:10:00     2015-04-10 10:03:04
    cookie1 2015-04-10 10:50:05     url6    6       2015-04-10 10:50:01     2015-04-10 10:10:00
    cookie1 2015-04-10 11:00:00     url7    7       2015-04-10 10:50:05     2015-04-10 10:50:01
    cookie2 2015-04-10 10:00:00     url11   1       1970-01-01 00:00:00     NULL
    cookie2 2015-04-10 10:00:02     url22   2       2015-04-10 10:00:00     NULL
    cookie2 2015-04-10 10:03:04     1url33  3       2015-04-10 10:00:02     2015-04-10 10:00:00
    cookie2 2015-04-10 10:10:00     url44   4       2015-04-10 10:03:04     2015-04-10 10:00:02
    cookie2 2015-04-10 10:50:01     url55   5       2015-04-10 10:10:00     2015-04-10 10:03:04
    cookie2 2015-04-10 10:50:05     url66   6       2015-04-10 10:50:01     2015-04-10 10:10:00
    cookie2 2015-04-10 11:00:00     url77   7       2015-04-10 10:50:05     2015-04-10 10:50:01
    
    st_1_time: 指定了往上第1行的值,default为'1970-01-01 00:00:00'
          cookie1第一行,往上1行为NULL,因此取默认值 1970-01-01 00:00:00
          cookie1第三行,往上1行值为第二行值,2015-04-10 10:00:02
          cookie1第六行,往上1行值为第五行值,2015-04-10 10:50:01
    last_2_time: 指定了往上第2行的值,为指定默认值
          cookie1第一行,往上2行为NULL
          cookie1第二行,往上2行为NULL
          cookie1第四行,往上2行为第二行值,2015-04-10 10:00:02
          cookie1第七行,往上2行为第五行值,2015-04-10 10:50:01

    8.def lead(e: Column, offset: Int, defaultValue: Any)Column

    与LAG相反
    LEAD(col,n,DEFAULT) 用于统计窗口内往下第n行值
    第一个参数为列名,第二个参数为往下第n行(可选,默认为1),第三个参数为默认值(当往下第n行为NULL时候,取默认值,如不指定,则为NULL

    cookie1 2015-04-10 10:00:02     url2
    cookie1 2015-04-10 10:00:00     url1
    cookie1 2015-04-10 10:03:04     1url3
    cookie1 2015-04-10 10:50:05     url6
    cookie1 2015-04-10 11:00:00     url7
    cookie1 2015-04-10 10:10:00     url4
    cookie1 2015-04-10 10:50:01     url5
    cookie2 2015-04-10 10:00:02     url22
    cookie2 2015-04-10 10:00:00     url11
    cookie2 2015-04-10 10:03:04     1url33
    cookie2 2015-04-10 10:50:05     url66
    cookie2 2015-04-10 11:00:00     url77
    cookie2 2015-04-10 10:10:00     url44
    cookie2 2015-04-10 10:50:01     url55
    
    df.withColumn("rn1",lag(col("createtime"),1,"1970-01-01 00:00:00").over(Window.partitionBy(col("cookieid")).orderBy(col("createtime"))).as(" last_1_time")).withColumn("rn1",lag(col("createtime"),2,"1970-01-01 00:00:00").over(Window.partitionBy(col("cookieid")).orderBy(col("createtime"))).as(" last_1_time").show()
    
    cookieid createtime             url    rn       next_1_time             next_2_time 
    -------------------------------------------------------------------------------------------
    cookie1 2015-04-10 10:00:00     url1    1       2015-04-10 10:00:02     2015-04-10 10:03:04
    cookie1 2015-04-10 10:00:02     url2    2       2015-04-10 10:03:04     2015-04-10 10:10:00
    cookie1 2015-04-10 10:03:04     1url3   3       2015-04-10 10:10:00     2015-04-10 10:50:01
    cookie1 2015-04-10 10:10:00     url4    4       2015-04-10 10:50:01     2015-04-10 10:50:05
    cookie1 2015-04-10 10:50:01     url5    5       2015-04-10 10:50:05     2015-04-10 11:00:00
    cookie1 2015-04-10 10:50:05     url6    6       2015-04-10 11:00:00     NULL
    cookie1 2015-04-10 11:00:00     url7    7       1970-01-01 00:00:00     NULL
    cookie2 2015-04-10 10:00:00     url11   1       2015-04-10 10:00:02     2015-04-10 10:03:04
    cookie2 2015-04-10 10:00:02     url22   2       2015-04-10 10:03:04     2015-04-10 10:10:00
    cookie2 2015-04-10 10:03:04     1url33  3       2015-04-10 10:10:00     2015-04-10 10:50:01
    cookie2 2015-04-10 10:10:00     url44   4       2015-04-10 10:50:01     2015-04-10 10:50:05
    cookie2 2015-04-10 10:50:01     url55   5       2015-04-10 10:50:05     2015-04-10 11:00:00
    cookie2 2015-04-10 10:50:05     url66   6       2015-04-10 11:00:00     NULL
    cookie2 2015-04-10 11:00:00     url77   7       1970-01-01 00:00:00     NULL
     
    --逻辑与LAG一样,只不过LAG是往上,LEAD是往下。

     

  • 相关阅读:
    20190729
    [51Nod1623] 完美消除
    [WC2013] 糖果公园
    20190727
    在Java中调用带参数的存储过程
    Oracle 字符集的查看和修改
    查询oracle server端的字符集
    Mysql 数据库中文乱码问题
    错误:”未能加载文件或程序集“System.Web.Mvc, Version=2.0.0.0” 解决方法
    CSS背景图拉伸自适应尺寸,全浏览器兼容
  • 原文地址:https://www.cnblogs.com/yyy-blog/p/12642840.html
Copyright © 2011-2022 走看看