zoukankan      html  css  js  c++  java
  • codeforces 455E

    题目:http://codeforces.com/problemset/problem/455/E

    题意:给定数组a,及f的定义:

            f[1][j] = a[j];  1 <= j <= n

            f[i][j] = min(f[i-1][j-1], f[i-1][j]) + a[j];  2 <= i <= j <= n

     给定q个询问,每个询问为l,r,求f[l][r]

    My solution:

    1.  写一些小数据就可以发现,其实对于一个询问l,r,其实等价于:

                  从[r-l+1, r]这个区间内取l个数,使其和最小。但是比较特殊的是,一个数可以取多次,并且如果取了一个x,那么[x+1,r]间的所有数必须得取。

                 例如,对于n=3, a = {2, 1, 3}

                 询问l=3, r=3的取法有:3+3+3=9, 3+3+1=7, 3+1+1=5, 3+1+2= 6;答案为3+1+1=5

         2.设答案f[l][r]的询问答案合法区间是在[x, r]这一段取得的,我们还可以发现如下的性质:

              1)a[x]一定是[x,r]中最小的,否则存在 x<=y<=r, a[y] <= a[x],比[x,r]更优的区间[y, r]

                 除[y, r]的共同区间外,剩下的l-y-r个[y,r]区间可以全取a[y],显然比[x,r]更小

              2)a[x+1]~a[y]各取一个,剩下的全取a[x],因为a[x]是区间最小元素,取越多答案越小

          3.基于2我们可以维护一个递增的序列来求答案,但是这样还是不够,妥妥TlE

            只能看下决策之间有什么关系了;

            对于询问(l,r)不妨设两个决策k<j,并且决策k优于j

            那么 (sum[r] - sum[k]) - (l - (r - k)) * a[k] <= (sum[r] - sum[j]) - (l - (r - j)) * a[j];

            整理一下式子:

                      (sum[k] - a[k]*k) - (sum[j] - a[j]*j) / (a[k] - a[j]) <= l - r;

            这不就是个斜率的式子,剩下的就是维护一个凸壳即可

            4.具体的话对于询问按照r排序,然后离线做

               然后二分一左边界,找到合法区间完,再二分找到合法的斜率。具体看代码吧

    code:

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <string>
     5 #include <cmath>
     6 #include <algorithm>
     7 #include <vector>
     8 #include <cstdlib>
     9 #include <sstream>
    10 #include <fstream>
    11 #include <list>
    12 #include <deque>
    13 #include <queue>
    14 #include <stack>
    15 #include <map>
    16 #include <set>
    17 #include <bitset>
    18 #include <cctype>
    19 #include <ctime>
    20 #include <utility>
    21 #define M0(x) memset(x, 0, sizeof(x))
    22 #define pb push_back
    23 #define mp make_pair
    24 #define x first
    25 #define y second
    26 #define vii vector< pair<int, int> >::iterator 
    27 using namespace std;
    28 const int maxn = 100010;
    29 vector< pair<int, int> > ask[maxn];
    30 int n, m;
    31 long long sum[maxn], ans[maxn];
    32 int s[maxn], top, a[maxn];
    33 
    34 inline double slope(int k, int j){
    35       double yk = sum[k] - (double)k * a[k], yj = sum[j] - (double)j * a[j];
    36       return (yk - yj) / (a[k] - a[j]);
    37 }
    38 
    39 void init(){
    40     for (int i = 1; i <= n; ++i)
    41         scanf("%d", a+i), sum[i] = sum[i-1] + a[i];
    42     for (int i = 0; i <= n; ++i) ask[i].clear();
    43     scanf("%d", &m);
    44     int l, r;
    45     for (int i = 0; i < m; ++i){
    46          scanf("%d%d", &l, &r);
    47          ask[r].pb(mp(l, i));
    48     }
    49 }
    50 
    51 void solve(){
    52     int top = 0;
    53     int l, r, mid, pos;
    54     for (int i = 1; i <= n; ++i){
    55           while (top > 0 && a[s[top]] >= a[i]) --top;
    56           while (top > 1 && slope(s[top], i) >= slope(s[top-1], i)) --top;
    57           s[++top] = i;
    58           for (vii it = ask[i].begin(); it != ask[i].end(); ++it){
    59                 l = lower_bound(s+1, s+top+1, i-it->x+1) - s;
    60                 r = top-1, pos = i;
    61                 while (l <= r){
    62                       mid = (l + r) >> 1;
    63                       if (slope(s[mid], s[mid+1]) <= it->x - i) pos = s[mid], r = mid - 1;
    64                       else l = mid + 1;
    65                 }
    66                 ans[it->y] = sum[i] - sum[pos] + (long long)a[pos]*(it->x+pos-i);
    67           }    
    68     }
    69     for (int i = 0; i < m; ++i)
    70        printf("%I64d
    ", ans[i]); 
    71 }
    72 int main(){
    73 //    freopen("a.in","r",stdin);
    74 //    freopen("a.out","w",stdout);
    75     while (scanf("%d", &n) != EOF){
    76         init();
    77         solve();
    78     }
    79     return 0;
    80 }
    View Code

      

          

  • 相关阅读:
    允许电脑被远程连接
    电脑更改用户密码
    HTML ------- 对文本进行操作的元素
    货币的发展
    SQL-----数据库三种删除方式详解
    HTML -------- 标签、元素、属性,
    HTML -------- 简介
    SQL --------------- HAVING 子句
    SQL --------------- GROUP BY 函数
    Shell编程——运算符
  • 原文地址:https://www.cnblogs.com/yzcstc/p/3963351.html
Copyright © 2011-2022 走看看