zoukankan      html  css  js  c++  java
  • 利用Faster R-CNN进行目标检测(0)

    由于毕业设计需要用到Faster R-CNN框架,故对此框架进行学习,为了更好的理解,找到了一篇非常详细的良心博客,这个系列分块对这篇博客翻译。

    供学习使用。

    首先贴出博文发原地址:

    http://www.telesens.co/2018/03/11/object-detection-and-classification-using-r-cnns/

    在这篇文章中,我将详细描述R-CNN(带有CNN特征的区域),一种最近引入的基于深度学习的对象检测和分类方法是如何工作的。R-CNN在检测和分类自然图像中的目标方面被证明是非常有效的,获得的地图分数远远高于以前的技术。R-CNN方法在Ross Girshick等人的一系列论文中进行了描述。

    以下链接是这篇文章进行解读的参考代码:

    https://github.com/ruotianluo/pytorch-faster-rcnn

    本文中使用的很多术语(例如不同层的名称)都遵循了代码中使用的术语。理解这篇文章中提供的信息可以使您更容易地跟踪PyTorch实现并进行自己的修改。

    文章组织

    section1 图像预处理

    在本节中,我们将描述应用于输入图像的预处理步骤。这些步骤包括减去一个平均像素值和缩放图像。训练和推断之间的预处理步骤必须相同。

    sectio2 网络组织

    在这一节中,我们将描述网络的三个主要组成部分——“head”网络、区域建议网络(RPN)和分类网络。

    section3 训练过程细节

    这是这篇文章最长的部分,详细描述了训练R-CNN网络的步骤

    section4 推断过程细节

    在这一节中,我们将描述推理过程中所涉及的步骤,例如使用训练好的R-CNN网络来识别有前景的区域,并对这些区域内的物体进行分类。

  • 相关阅读:
    RAID-磁盘阵列
    Redis-Cluster 5.0.4 集群部署
    linux系统磁盘缩容
    MongoDB Replica Set 集群
    CentOS7 GlusterFS文件系统部署
    CentOS7 firewalld防火墙规则
    centos7 升级openssh到openssh-8.0p1版本
    MySQL 中操作excel表格总结
    超哥带你学GIT
    学习是主动吃苦
  • 原文地址:https://www.cnblogs.com/yzh1008/p/12454622.html
Copyright © 2011-2022 走看看