zoukankan      html  css  js  c++  java
  • HDU

    Covering

     
    Bob's school has a big playground, boys and girls always play games here after school. 

    To protect boys and girls from getting hurt when playing happily on the playground, rich boy Bob decided to cover the playground using his carpets. 

    Meanwhile, Bob is a mean boy, so he acquired that his carpets can not overlap one cell twice or more. 

    He has infinite carpets with sizes of 1×21×2 and 2×12×1, and the size of the playground is 4×n4×n. 

    Can you tell Bob the total number of schemes where the carpets can cover the playground completely without overlapping? 

    InputThere are no more than 5000 test cases. 

    Each test case only contains one positive integer n in a line. 

    1n10181≤n≤1018 
    OutputFor each test cases, output the answer mod 1000000007 in a line. 
    Sample Input

    1
    2

    Sample Output

    1
    5


    题意:用1*2铺满4*n的地面。
    特别综合的一道题。求法是先用模拟暴搜找出初始几个n的情况,//1 5 11 36 95 281 781 2245 6336 18061
    #include<stdio.h>
    #include<stdlib.h>
    #include<string.h>
    #include<math.h>
    #define MAX 1005
    #define INF 0x3f3f3f3f
    #define MOD 1000000007
    using namespace std;
    typedef long long ll;
    
    int b[5][MAX];
    int n;
    ll ans;
    
    void dfs(int s){
        int i,j;
        if(s==4*n){
            ans++;
            return;
        }
        for(i=1;i<=4;i++){
            for(j=1;j<=n;j++){
                if(b[i][j]==0){
                    if(i+1<=4){
                        if(b[i+1][j]==0){
                            b[i][j]=1;
                            b[i+1][j]=1;
                            dfs(s+2);
                            b[i][j]=0;
                            b[i+1][j]=0;
                        }
                    }
                    if(j+1<=n){
                        if(b[i][j+1]==0){
                            b[i][j]=1;
                            b[i][j+1]=1;
                            dfs(s+2);
                            b[i][j]=0;
                            b[i][j+1]=0;
                        }
                    }
                    return;
                }
            }
        }
    }
    int main()
    {
        int i;
        while(~scanf("%d",&n)){
            memset(b,0,sizeof(b));
            ans=0;
            dfs(0);
            printf("%lld
    ",ans);    
        }
        return 0;
    }
    View Code
    
    
    然后再找规律,猜想存在递推关系,项数可以一点点加,当用五层循环寻找递推系数关系时发现,存在一种相同的系数情况。//1 5 1 -1 0
    
    
    #include<stdio.h>
    #include<stdlib.h>
    #include<string.h>
    #include<math.h>
    #define MAX 1005
    #define INF 0x3f3f3f3f
    #define MOD 1000000007
    using namespace std;
    typedef long long ll;
    
    int x[]={0,1,5,11,36,95,281,781,2245,6336,18061};
    
    void find(int i){
        for(int a=-10;a<=10;a++){
            for(int b=-10;b<=10;b++){
                for(int c=-10;c<=10;c++){
                    for(int d=-10;d<=10;d++){
                        for(int e=-10;e<=10;e++){
                            if(a*x[i-1]+b*x[i-2]+c*x[i-3]+d*x[i-4]+e==x[i]){
                                printf("%d:%d %d %d %d %d
    ",i,a,b,c,d,e);
                            }
                        }
                    }
                }
            }
        }
    }
    int main()
    {
        int n,i;
        for(i=5;i<=10;i++){
            find(i);
        }
        return 0;
    }
    View Code
    
    
    最后确定递推公式:f[i]=f[i-1]+5*f[i-2]+f[i-3]-f[i-4]+0。(注意:负数系数取余时要先加再余)然后套矩阵快速幂。
    #include<stdio.h>
    #include<stdlib.h>
    #include<string.h>
    #include<math.h>
    #include<algorithm>
    #define MAX 10
    #define MOD 1000000007
    using namespace std;
    typedef long long ll;
    
    struct mat{
        ll a[MAX][MAX];
    };
    
    mat operator *(mat x,mat y)    //重载乘运算
    {
        mat ans;
        memset(ans.a,0,sizeof(ans.a));
        for(int i=1;i<=4;i++){
            for(int j=1;j<=4;j++){
                for(int k=1;k<=4;k++){
                    ans.a[i][j]+=(x.a[i][k]*y.a[k][j]+MOD)%MOD;    //先加后余,避免负数取模异常
                    ans.a[i][j]%=MOD;
                }
            }
        }
        return ans;
    }
    mat qMod(mat a,ll n)    //矩阵快速幂
    {
        mat t;
        t.a[1][1]=1;t.a[1][2]=5;t.a[1][3]=1;t.a[1][4]=-1;
        t.a[2][1]=1;t.a[2][2]=0;t.a[2][3]=0;t.a[2][4]=0;
        t.a[3][1]=0;t.a[3][2]=1;t.a[3][3]=0;t.a[3][4]=0;
        t.a[4][1]=0;t.a[4][2]=0;t.a[4][3]=1;t.a[4][4]=0;    //单位矩阵
        while(n){
            if(n&1) a=t*a;    //顺序不可颠倒
            n>>=1;
            t=t*t;
        }
        return a;
    }
    int main()
    {
        ll n;
        while(~scanf("%I64d",&n)){
            if(n==1) printf("1
    ");
            else if(n==2) printf("5
    ");
            else if(n==3) printf("11
    ");
            else if(n==4) printf("36
    ");
            else{
                mat a;
                memset(a.a,0,sizeof(a.a));
                a.a[1][1]=36;
                a.a[2][1]=11;
                a.a[3][1]=5;
                a.a[4][1]=1;   //初始矩阵
                a=qMod(a,n-4);
                printf("%I64d
    ",a.a[1][1]);
            }
        }
        return 0;
    }
    View Code
  • 相关阅读:
    soapUI学习笔记--用例字段参数化
    python 写数据到txt 文件
    Python生成8位随机字符串的一些方法
    python datetime获取几分钟、小时、天之前的时间
    MQTT 测试工具介绍
    运用MQTT-JMeter插件测试MQTT服务器性能
    mqtt-jmeter
    ActiveMQ测试工具
    MQTT压力测试工具之JMeter插件教程
    volatile非原子性的示例
  • 原文地址:https://www.cnblogs.com/yzm10/p/9313916.html
Copyright © 2011-2022 走看看