zoukankan      html  css  js  c++  java
  • Round #416 B. Vladik and Complicated Book(Div.2)

    Vladik had started reading a complicated book about algorithms containing n pages. To improve understanding of what is written, his friends advised him to read pages in some order given by permutationP = [p1, p2, ..., pn], where pi denotes the number of page that should be read i-th in turn.

    Sometimes Vladik’s mom sorted some subsegment of permutation P from position l to position r inclusive, because she loves the order. For every of such sorting Vladik knows number x — what index of page in permutation he should read. He is wondered if the page, which he will read after sorting, has changed. In other words, has px changed? After every sorting Vladik return permutation to initial state, so you can assume that each sorting is independent from each other.

    Input

    First line contains two space-separated integers nm (1 ≤ n, m ≤ 104) — length of permutation and number of times Vladik's mom sorted some subsegment of the book.

    Second line contains n space-separated integers p1, p2, ..., pn (1 ≤ pi ≤ n) — permutation P. Note that elements in permutation are distinct.

    Each of the next m lines contains three space-separated integers lirixi (1 ≤ li ≤ xi ≤ ri ≤ n) — left and right borders of sorted subsegment in i-th sorting and position that is interesting to Vladik.

    Output

    For each mom’s sorting on it’s own line print "Yes", if page which is interesting to Vladik hasn't changed, or "No" otherwise.

    Examples
    input
    5 5
    5 4 3 2 1
    1 5 3
    1 3 1
    2 4 3
    4 4 4
    2 5 3
    output
    Yes
    No
    Yes
    Yes
    No
    input
    6 5
    1 4 3 2 5 6
    2 4 3
    1 6 2
    4 5 4
    1 3 3
    2 6 3
    output
    Yes
    No
    Yes
    No
    Yes
    Note

    Explanation of first test case:

    1. [1, 2, 3, 4, 5] — permutation after sorting, 3-rd element hasn’t changed, so answer is "Yes".
    2. [3, 4, 5, 2, 1] — permutation after sorting, 1-st element has changed, so answer is "No".
    3. [5, 2, 3, 4, 1] — permutation after sorting, 3-rd element hasn’t changed, so answer is "Yes".
    4. [5, 4, 3, 2, 1] — permutation after sorting, 4-th element hasn’t changed, so answer is "Yes".
    5. [5, 1, 2, 3, 4] — permutation after sorting, 3-rd element has changed, so answer is "No".
     1 #include <iostream>
     2 #include <string.h>
     3 using namespace std;
     4 int main(){
     5    int n,m,b[100005],l,r,x,t;
     6    memset(b,0,sizeof(b));
     7    cin>>n>>m;
     8    for(int i=0;i<n;i++)
     9     cin>>b[i];
    10    for(int i=0;i<m;i++){
    11     t=0;
    12     cin>>l>>r>>x;
    13     for(int j=l-1;j<r;j++){
    14         if(b[j]<b[x-1])
    15             t++;
    16     } if(t==x-l)  cout<<"Yes"<<endl;
    17       else cout<<"No"<<endl;
    18    }
    19     return 0;
    20 }
     1 #include<iostream>
     2 #include<stdio.h>
     3 #include<math.h>
     4 #include<string.h>
     5 #include<algorithm>
     6 using namespace std;
     7 #define MAXN 100001
     8 int p[MAXN];
     9 int main()
    10 {
    11     memset(p,0,sizeof(p));
    12 
    13     int n,m;
    14     int l,r,x;
    15     int count;//记录小于p[x]的数的个数
    16     scanf("%d%d",&n,&m);
    17     for(int i=0;i<n;i++)
    18         scanf("%d",&p[i]);
    19     for(int i=0;i<m;i++){
    20         count=0;
    21         scanf("%d%d%d",&l,&r,&x);
    22         for(int j=l-1;j<r;j++)
    23             if(p[j]<p[x-1]) count++;
    24         if(x-l==count) printf("Yes
    ");
    25         else printf("No
    ");
    26     }
    27  }
  • 相关阅读:
    bzoj 1012: [JSOI2008]最大数maxnumber 线段树
    Codeforces Round #260 (Div. 2) A , B , C 标记,找规律 , dp
    Codeforces Round #256 (Div. 2) E. Divisors 因子+dfs
    Codeforces Round #340 (Div. 2) E. XOR and Favorite Number 莫队算法
    Codeforces Round #348 (VK Cup 2016 Round 2, Div. 1 Edition) C. Little Artem and Random Variable 数学
    BZOJ 1005 [HNOI2008]明明的烦恼 purfer序列,排列组合
    BZOJ 1211: [HNOI2004]树的计数 purfer序列
    UVA 1629 Cake slicing 记忆化搜索
    UVA1630 Folding 区间DP
    BNU 51640 Training Plan DP
  • 原文地址:https://www.cnblogs.com/z-712/p/7307727.html
Copyright © 2011-2022 走看看