zoukankan      html  css  js  c++  java
  • hdoj 1159 Common Subsequence

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 
    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. 

    Input

    abcfbc abfcab
    programming contest 
    abcd mnp

    Output

    4
    2
    0

    Sample Input

    abcfbc abfcab
    programming contest 
    abcd mnp

    Sample Output

    4
    2
    0

     1 //¶¯Ì¬¹æ»®
     2 #include <iostream>
     3 #include <stdio.h>
     4 #include <string.h>
     5 #define Max(a,b) (a)>(b)?(a):(b)
     6 using namespace std;
     7 char s1[1005] ,s2[1005];
     8 int dp[1005][1005];
     9 int main(){
    10     int len1,len2;
    11     while(~scanf("%s %s",s1,s2)){
    12         memset(dp,0,sizeof(dp));
    13         len1=strlen(s1),len2=strlen(s2);
    14         for(int i=1;i<=len1;i++){
    15             for(int j=1;j<=len2;j++){
    16                 if(s1[i-1]==s2[j-1])  dp[i][j]=dp[i-1][j-1]+1;
    17                 else dp[i][j]=Max(dp[i-1][j],dp[i][j-1]);
    18             }
    19         }
    20         printf("%d
    ",dp[len1][len2]);
    21     }
    22     return 0;
    23 }
  • 相关阅读:
    【模板】后缀自动机
    【模板】矩阵求逆
    【hdu5517】Triple
    【模板】多标记 LCT
    【洛谷P4172】水管局长
    【模板】LCT
    【CF786B】Legacy
    jacoco学习
    python + redis
    Python Gitlab Api 使用方法
  • 原文地址:https://www.cnblogs.com/z-712/p/7324283.html
Copyright © 2011-2022 走看看