zoukankan      html  css  js  c++  java
  • hdoj 1159 Common Subsequence

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 
    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. 

    Input

    abcfbc abfcab
    programming contest 
    abcd mnp

    Output

    4
    2
    0

    Sample Input

    abcfbc abfcab
    programming contest 
    abcd mnp

    Sample Output

    4
    2
    0

     1 //¶¯Ì¬¹æ»®
     2 #include <iostream>
     3 #include <stdio.h>
     4 #include <string.h>
     5 #define Max(a,b) (a)>(b)?(a):(b)
     6 using namespace std;
     7 char s1[1005] ,s2[1005];
     8 int dp[1005][1005];
     9 int main(){
    10     int len1,len2;
    11     while(~scanf("%s %s",s1,s2)){
    12         memset(dp,0,sizeof(dp));
    13         len1=strlen(s1),len2=strlen(s2);
    14         for(int i=1;i<=len1;i++){
    15             for(int j=1;j<=len2;j++){
    16                 if(s1[i-1]==s2[j-1])  dp[i][j]=dp[i-1][j-1]+1;
    17                 else dp[i][j]=Max(dp[i-1][j],dp[i][j-1]);
    18             }
    19         }
    20         printf("%d
    ",dp[len1][len2]);
    21     }
    22     return 0;
    23 }
  • 相关阅读:
    mysql启动报错:Another MySQL daemon already running with the same unix socket.
    DRBD编译安装中出现的问题及解决小结
    DRBD+Heartbeat+Mysql高可用环境部署
    LVS三种包转发模型调度算法
    nagios环境部署(rhel6.5)
    reorder-list
    二叉树的前序遍历(不用递归)
    最大正方形
    名字的漂亮度
    计算字符个数
  • 原文地址:https://www.cnblogs.com/z-712/p/7324283.html
Copyright © 2011-2022 走看看