zoukankan      html  css  js  c++  java
  • poj 2891 模数不互质的中国剩余定理

    Strange Way to Express Integers

    Description

    Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:

    Choose k different positive integers a1a2…, ak. For some non-negative m, divide it by every ai (1 ≤ i ≤ k) to find the remainder ri. If a1a2, …, ak are properly chosen, m can be determined, then the pairs (airi) can be used to express m.

    “It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?”

    Since Elina is new to programming, this problem is too difficult for her. Can you help her?

    Input

    The input contains multiple test cases. Each test cases consists of some lines.

    • Line 1: Contains the integer k.
    • Lines 2 ~ k + 1: Each contains a pair of integers airi (1 ≤ i ≤ k).

    Output

    Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1.

    Sample Input

    2
    8 7
    11 9

    Sample Output

    31

    Hint

    All integers in the input and the output are non-negative and can be represented by 64-bit integral types.

    题意:

    就是给你n组数据

    每一组数据a,b   表示    x%a==b

    求这n组数据的公共的最小x的解

    题解:

    中国剩余定理中的不互质的模线性方程组

    由不互质的模线性方程组
    x%r1=a1              1
    x%r2=a2              2
    x%r3=a3              3
    x%r4=a4              4
    ......
    由  1  2式子得到:
    x = r1*k1 + a1
    x = r2*k2 + a2
    联立:
    r1*k1 + a1 =r2*k2 + a2
    得到
    r1*k1 + r2*k2 = a2 - a1  (其中k2的正负可变)

    令g=gcd(r1,r2)

    那么上叙方程同时除以g后

    r1*k1 / g + r2*k2 / g = (a2 - a1 )/ g            

    由扩展欧几里得可以得到k1,则有
    x1 = r1*k1 + a1                         5
         x1表示1 2式子得到的r1 和 让r2的最大公约数

    上ac代码:

    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    
    typedef long long ll;
    ll a[100005],r[100005];
    int n;
    
    ll exgcd(ll a,ll b,ll &x,ll &y){
        if(b==0) return x=1,y=0,a;
        ll tmp=exgcd(b,a%b,y,x);
        y-=a/b*x;
        return tmp;
    }
    
    ll solve(){
        ll M=a[1],R=r[1],x,y,d;
        for(int i=2;i<=n;i++){
            d=exgcd(M,a[i],x,y);
            if((R-r[i])%d!=0) return -1;
            x=(R-r[i])/d*x%a[i];
            R-=x*M;
            M=M/d*a[i];
            R%=M;
        }
        return (R%M+M)%M;
    }
    
    int main(){
        while(~scanf("%d",&n)){
            for(int i=1;i<=n;i++)scanf("%lld%lld",&a[i],&r[i]);
            printf("%lld
    ",solve());
        }
        return 0;
    }

    #include<cstdio>#include<cstring>#include<iostream>#include<algorithm> using namespace std; typedef long long ll; ll a[100005],r[100005]; int n; ll exgcd(ll a,ll b,ll &x,ll &y){ if(b==0) returnx=1,y=0,a; ll tmp=exgcd(b,a%b,y,x); y-=a/b*x; return tmp; } ll solve(){ ll M=a[1],R=r[1],x,y,d; for(int i=2;i<=n;i++){ d=exgcd(M,a[i],x,y); if((R-r[i])%d!=0) return -1; x=(R-r[i])/d*x%a[i]; R-=x*M; M=M/d*a[i]; R%=M; } return (R%M+M)%M; } int main(){ while(~scanf("%d",&n)){ for(int i=1;i<=n;i++)scanf("%lld%lld",&a[i],&r[i]); printf("%lld ",solve()); } return0; }

  • 相关阅读:
    MySpace你居然报黄页?
    ExtAspNet应用技巧(十三) 后台主页面(IFrame框架)
    ExtAspNet应用技巧(十七) 新增菜单
    ExtAspNet应用技巧(十九) 日志管理
    ExtAspNet应用技巧(二十四) AppBox之Grid数据库分页排序与批量删除
    ExtAspNet应用技巧(二十三) Ext4JSLint之Grid的使用
    ExtAspNet应用技巧(二十一) Ext4JSLint之整体框架
    ExtAspNet应用技巧(十六) 菜单管理
    ExtAspNet应用技巧(二十二) Ext4JSLint之JSON文件创建树控件
    ImageList控件的问题
  • 原文地址:https://www.cnblogs.com/z1141000271/p/7219271.html
Copyright © 2011-2022 走看看