zoukankan      html  css  js  c++  java
  • 爬虫 cast_day05_多进程_多线程_协程_selenium的使用

     

    多线程:

     1 import requests
     2 import random
     3 import json
     4 from lxml import etree
     5 import time
     6 
     7 #用户代理池
     8 USER_AGENT_LISTS = []
     9 with open("zcb/USER_AGENT.json","r",encoding="utf8") as f:
    10     USER_AGENT_LISTS = json.load(f)
    11 # PROXY_LISTS_ALL = []
    12 # with open("zcb/PROXY_LISTS.json", "r", encoding="utf8") as f:
    13 #     PROXY_LISTS_ALL = json.load(f)
    14 
    15 class QiuShiBaiKe:
    16     def __init__(self):
    17         self.base_url = "http://www.lovehhy.net/News/List/ALL/{}/"
    18         self.headers = {"User-Agent": random.choice(USER_AGENT_LISTS)}
    19 
    20     #1, 获取所有的url
    21     def get_url_lists(self):   # --> url_lists []
    22         url_lists = []
    23         for i in range(1,21):  #爬取 1-20 页 !
    24         # for i in range(1,2):  #爬取 1-2页 !
    25             url_lists.append(self.base_url.format(i))
    26         return url_lists
    27 
    28     #2, 发送请求
    29     def send_requests(self,url):
    30         time.sleep(1)  #加上延迟
    31         response = requests.get(url,headers = self.headers)
    32         data_str = response.content.decode("gbk")
    33         return data_str
    34 
    35     #3,解析数据
    36     '''
    37     //div[@class="post_recommend_new"]
    38     '''
    39     def parase_data(self,data_str):
    40         #a,转换类型
    41         data_html = etree.HTML(data_str)
    42         #b,解析数据
    43         div_lists = data_html.xpath('//div[@class="post_recommend_new"]')  #获取所有的帖子
    44 
    45         for div in div_lists:
    46             title = div.xpath('.//h3/a/text()')[0]
    47             # print(title,type(title))  #['1、Redmi K30发布后,小米集团股价大涨近7%'] <class 'list'>
    48             print(title)
    49 
    50     #4,保存数据
    51     def save_to_file(self,data_str):
    52         with open("01_qiushi.html","w",encoding="utf8") as f:
    53             f.write(data_str)
    54 
    55     def _start(self):
    56         #a, 获取所有的url
    57         url_lists = self.get_url_lists()
    58         #b, 循环遍历 url  ,保存数据到本地。
    59         for url in url_lists:
    60             data_str = self.send_requests(url)
    61             self.parase_data(data_str)
    62             # self.save_to_file(data_str)
    63 
    64     #5,调度方法
    65     def run(self):
    66         start_time = time.time()
    67         self._start()
    68         end_time = time.time()
    69 
    70         print("总耗时:{} s".format(end_time-start_time))  # 输出: 总耗时:25.52379059791565 s  20页
    71 
    72 
    73 if __name__ == '__main__':
    74     QiuShiBaiKe().run()
    单线程_version

    =======================================================1==================================================

     1 import requests
     2 import random
     3 import json
     4 from lxml import etree
     5 import time
     6 import threading
     7 from queue import Queue
     8 
     9 #用户代理池
    10 USER_AGENT_LISTS = []
    11 with open("zcb/USER_AGENT.json","r",encoding="utf8") as f:
    12     USER_AGENT_LISTS = json.load(f)
    13 # PROXY_LISTS_ALL = []
    14 # with open("zcb/PROXY_LISTS.json", "r", encoding="utf8") as f:
    15 #     PROXY_LISTS_ALL = json.load(f)
    16 
    17 class QiuShiBaiKe:
    18     def __init__(self):
    19         self.base_url = "http://www.lovehhy.net/News/List/ALL/{}/"
    20         self.headers = {"User-Agent": random.choice(USER_AGENT_LISTS)}
    21 
    22         #创建三个队列
    23         self.url_queue = Queue() # url 队列
    24         self.response_queue = Queue() # response 队列
    25         self.parsed_data_queue = Queue() # parse_data_queue 队列
    26 
    27 
    28     #1, 获取所有的url
    29     def get_url_lists(self):   # --> url_lists []
    30         for i in range(1,21):  #爬取 1-20 页 !
    31         # for i in range(1,2):  #爬取 1-2页 !
    32             #q1 url 入队列
    33             self.url_queue.put(self.base_url.format(i))
    34 
    35     #2, 发送请求
    36     def send_requests(self):
    37         while True:
    38             #q1' url 出队列
    39             url = self.url_queue.get()
    40 
    41             time.sleep(1)  #加上延迟
    42             response = requests.get(url,headers = self.headers)
    43 
    44             #q2 响应对像  入队列
    45             self.response_queue.put(response)
    46 
    47             # url_response 出队列,如果想让计数器 减一,需要如下设置:
    48             self.url_queue.task_done()
    49 
    50 
    51     #3,解析数据
    52     def parase_data(self):
    53         while True:
    54             #q2'  response 队列 出队
    55             data_str = self.response_queue.get().content.decode("gbk")
    56 
    57             #a,转换类型
    58             data_html = etree.HTML(data_str)
    59             #b,解析数据
    60             div_lists = data_html.xpath('//div[@class="post_recommend_new"]')  #获取所有的帖子
    61 
    62             for div in div_lists:
    63                 title = div.xpath('.//h3/a/text()')[0]
    64                 #q3 解析后的data 入队列
    65                 self.parsed_data_queue.put(title)
    66 
    67             # response_queue出队列,如果想让计数器 减一,需要如下设置:
    68             self.response_queue.task_done()
    69 
    70     #4,保存数据
    71     def save_to_file(self):
    72         while True:
    73             # parsed_data_queue 出队,
    74             data_str = self.parsed_data_queue.get()
    75             print(data_str)  
    76 
    77             # parsed_data_queue 出队列,如果想让计数器 减一,需要如下设置:
    78             self.parsed_data_queue.task_done()
    79 
    80     def _start(self):
    81         #a, 获取所有的url
    82         url_lists = self.get_url_lists()
    83         #b, 循环遍历 url  ,保存数据到本地。
    84         for url in url_lists:
    85             data_str = self.send_requests(url)
    86             self.parase_data(data_str)
    87             # self.save_to_file(data_str)
    88 
    89     #5,调度方法
    90     def run(self):
    91         start_time = time.time()
    92         self._start()
    93         end_time = time.time()
    94 
    95         print("总耗时:{} s".format(end_time-start_time))  # 输出: 总耗时:26.19527816772461 s   20页
    96 
    97 
    98 if __name__ == '__main__':
    99     QiuShiBaiKe().run()
    用队列实现解耦。。。

    下面是第四个步骤:

    添加多线程的步骤,如下:

      1 import requests
      2 import random
      3 import json
      4 from lxml import etree
      5 import time
      6 import threading
      7 from queue import Queue
      8 
      9 #用户代理池
     10 USER_AGENT_LISTS = []
     11 with open("zcb/USER_AGENT.json","r",encoding="utf8") as f:
     12     USER_AGENT_LISTS = json.load(f)
     13 # PROXY_LISTS_ALL = []
     14 # with open("zcb/PROXY_LISTS.json", "r", encoding="utf8") as f:
     15 #     PROXY_LISTS_ALL = json.load(f)
     16 
     17 class QiuShiBaiKe:
     18     def __init__(self):
     19         self.base_url = "http://www.lovehhy.net/News/List/ALL/{}/"
     20         self.headers = {"User-Agent": random.choice(USER_AGENT_LISTS)}
     21 
     22         #创建三个队列
     23         self.url_queue = Queue() # url 队列
     24         self.response_queue = Queue() # response 队列
     25         self.parsed_data_queue = Queue() # parse_data_queue 队列
     26 
     27 
     28     #1, 获取所有的url
     29     def get_url_lists(self):   # --> url_lists []
     30         for i in range(1,21):  #爬取 1-20 页 !
     31         # for i in range(1,2):  #爬取 1-2页 !
     32             #q1 url 入队列
     33             self.url_queue.put(self.base_url.format(i))
     34 
     35     #2, 发送请求
     36     def send_requests(self):
     37         while True:
     38             #q1' url 出队列
     39             url = self.url_queue.get()
     40 
     41             time.sleep(1)  #加上延迟
     42             response = requests.get(url,headers = self.headers)
     43 
     44             #q2 响应对像  入队列
     45             self.response_queue.put(response)
     46 
     47             # url_response 出队列,如果想让计数器 减一,需要如下设置:
     48             self.url_queue.task_done()
     49 
     50 
     51     #3,解析数据
     52     def parase_data(self):
     53         while True:
     54             #q2'  response 队列 出队
     55             data_str = self.response_queue.get().content.decode("gbk")
     56 
     57             #a,转换类型
     58             data_html = etree.HTML(data_str)
     59             #b,解析数据
     60             div_lists = data_html.xpath('//div[@class="post_recommend_new"]')  #获取所有的帖子
     61 
     62             for div in div_lists:
     63                 title = div.xpath('.//h3/a/text()')[0]
     64                 #q3 解析后的data 入队列
     65                 self.parsed_data_queue.put(title)
     66 
     67             # response_queue出队列,如果想让计数器 减一,需要如下设置:
     68             self.response_queue.task_done()
     69 
     70     #4,保存数据
     71     def save_to_file(self):
     72         while True:
     73             # parsed_data_queue 出队,
     74             data_str = self.parsed_data_queue.get()
     75             print(data_str)
     76 
     77             # parsed_data_queue 出队列,如果想让计数器 减一,需要如下设置:
     78             self.parsed_data_queue.task_done()
     79 
     80     def _start(self):
     81         # 开多线程 步骤: 1,创建线程 ,2, .setDameon(True)设置守护线程  3, .start()  开始执行
     82         th_lists = []
     83         #1 获取url 线程
     84         th_url = threading.Thread(target=self.get_url_lists )  #不需要传参数
     85         th_lists.append(th_url)
     86         #2 发送请求线程
     87         #手动设置 并发数
     88         th_send = threading.Thread(target=self.send_requests )  #不需要传参数
     89         th_lists.append(th_send)
     90 
     91         #3 解析数据线程
     92         th_parse = threading.Thread(target=self.parase_data )  #不需要传参数
     93         th_lists.append(th_parse)
     94         #4 保存数据线程
     95         th_save = threading.Thread(target=self.save_to_file)  # 不需要传参数
     96         th_lists.append(th_save)
     97 
     98         #对四个线程 统一 设置守护线程 和 开始
     99         for th in th_lists:
    100             th.setDaemon(True)
    101             th.start()
    102 
    103         #注意,此时用队列来阻塞主线程 当三个队列都为0 时, 才不阻塞.
    104         for q in [self.parsed_data_queue,self.response_queue,self.url_queue]:
    105             q.join()
    106 
    107 
    108     def run(self):
    109         start_time = time.time()
    110         self._start()
    111         end_time = time.time()
    112 
    113         print("总耗时:{} s".format(end_time-start_time))  # 输出: 总耗时:25.04452872276306 s   20页
    114 
    115 
    116 if __name__ == '__main__':
    117     QiuShiBaiKe().run()
    118 
    119 
    120 
    121 
    122 '''
    123 import requests
    124 import random
    125 import json
    126 from lxml import etree
    127 import time
    128 import threading
    129 from queue import Queue
    130 
    131 #用户代理池
    132 USER_AGENT_LISTS = []
    133 with open("zcb/USER_AGENT.json","r",encoding="utf8") as f:
    134     USER_AGENT_LISTS = json.load(f)
    135 # PROXY_LISTS_ALL = []
    136 # with open("zcb/PROXY_LISTS.json", "r", encoding="utf8") as f:
    137 #     PROXY_LISTS_ALL = json.load(f)
    138 
    139 class QiuShiBaiKe:
    140     def __init__(self):
    141         self.base_url = "http://www.lovehhy.net/News/List/ALL/{}/"
    142         self.headers = {"User-Agent": random.choice(USER_AGENT_LISTS)}
    143 
    144         #创建三个队列
    145         self.url_queue = Queue() # url 队列
    146         self.response_queue = Queue() # response 队列
    147         self.parsed_data_queue = Queue() # parse_data_queue 队列
    148 
    149 
    150     #1, 获取所有的url
    151     def get_url_lists(self):   # --> url_lists []
    152         for i in range(1,21):  #爬取 1-20 页 !
    153         # for i in range(1,2):  #爬取 1-2页 !
    154             #q1 url 入队列
    155             self.url_queue.put(self.base_url.format(i))
    156 
    157     #2, 发送请求
    158     def send_requests(self):
    159         while True:
    160             #q1' url 出队列
    161             url = self.url_queue.get()
    162 
    163             time.sleep(1)  #加上延迟
    164             response = requests.get(url,headers = self.headers)
    165 
    166             #q2 响应对像  入队列
    167             self.response_queue.put(response)
    168 
    169             # url_response 出队列,如果想让计数器 减一,需要如下设置:
    170             self.url_queue.task_done()
    171 
    172 
    173     #3,解析数据
    174     def parase_data(self):
    175         while True:
    176             #q2'  response 队列 出队
    177             data_str = self.response_queue.get().content.decode("gbk")
    178 
    179             #a,转换类型
    180             data_html = etree.HTML(data_str)
    181             #b,解析数据
    182             div_lists = data_html.xpath('//div[@class="post_recommend_new"]')  #获取所有的帖子
    183 
    184             for div in div_lists:
    185                 title = div.xpath('.//h3/a/text()')[0]
    186                 #q3 解析后的data 入队列
    187                 self.parsed_data_queue.put(title)
    188 
    189             # response_queue出队列,如果想让计数器 减一,需要如下设置:
    190             self.response_queue.task_done()
    191 
    192     #4,保存数据
    193     def save_to_file(self):
    194         while True:
    195             # parsed_data_queue 出队,
    196             data_str = self.parsed_data_queue.get()
    197             print(data_str)
    198 
    199             # parsed_data_queue 出队列,如果想让计数器 减一,需要如下设置:
    200             self.parsed_data_queue.task_done()
    201 
    202     def _start(self):
    203         # 开多线程 步骤: 1,创建线程 ,2, .setDameon(True)设置守护线程  3, .start()  开始执行
    204         #1 获取url 线程
    205         th_url = threading.Thread(target=self.get_url_lists )  #不需要传参数
    206         th_url.setDaemon(True)  #设置守护线程
    207         th_url.start()
    208 
    209         #2 发送请求线程
    210         th_send = threading.Thread(target=self.send_requests )  #不需要传参数
    211         th_send.setDaemon(True)  #设置守护线程
    212         th_send.start()
    213 
    214         #3 解析数据线程
    215         th_parse = threading.Thread(target=self.parase_data )  #不需要传参数
    216         th_parse.setDaemon(True)  #设置守护线程
    217         th_parse.start()
    218 
    219         #4 保存数据线程
    220         th_save = threading.Thread(target=self.save_to_file)  # 不需要传参数
    221         th_save.setDaemon(True)  # 设置守护线程
    222         th_save.start()
    223 
    224     def run(self):
    225         start_time = time.time()
    226         self._start()
    227         end_time = time.time()
    228 
    229         print("总耗时:{} s".format(end_time-start_time))  # 输出: 总耗时:26.19527816772461 s   20页
    230 
    231 
    232 if __name__ == '__main__':
    233     QiuShiBaiKe().run()
    234 
    235 
    236 
    237 '''
    每个函数开一个线程

    此时的,发请求的线程 只有一个线程,这使得 发送请求也是一个一个的请求,所以我们可以给发请求多加几个线程。例如:给它变为三个线程:

      1 import requests
      2 import random
      3 import json
      4 from lxml import etree
      5 import time
      6 import threading
      7 from queue import Queue
      8 
      9 #用户代理池
     10 USER_AGENT_LISTS = []
     11 with open("zcb/USER_AGENT.json","r",encoding="utf8") as f:
     12     USER_AGENT_LISTS = json.load(f)
     13 # PROXY_LISTS_ALL = []
     14 # with open("zcb/PROXY_LISTS.json", "r", encoding="utf8") as f:
     15 #     PROXY_LISTS_ALL = json.load(f)
     16 
     17 class QiuShiBaiKe:
     18     def __init__(self):
     19         self.base_url = "http://www.lovehhy.net/News/List/ALL/{}/"
     20         self.headers = {"User-Agent": random.choice(USER_AGENT_LISTS)}
     21 
     22         #创建三个队列
     23         self.url_queue = Queue() # url 队列
     24         self.response_queue = Queue() # response 队列
     25         self.parsed_data_queue = Queue() # parse_data_queue 队列
     26 
     27 
     28     #1, 获取所有的url
     29     def get_url_lists(self):   # --> url_lists []
     30         for i in range(1,21):  #爬取 1-20 页 !
     31         # for i in range(1,2):  #爬取 1-2页 !
     32             #q1 url 入队列
     33             self.url_queue.put(self.base_url.format(i))
     34 
     35     #2, 发送请求
     36     def send_requests(self):
     37         while True:
     38             #q1' url 出队列
     39             url = self.url_queue.get()
     40 
     41             time.sleep(1)  #加上延迟
     42             response = requests.get(url,headers = self.headers)
     43 
     44             #q2 响应对像  入队列
     45             self.response_queue.put(response)
     46 
     47             # url_response 出队列,如果想让计数器 减一,需要如下设置:
     48             self.url_queue.task_done()
     49 
     50 
     51     #3,解析数据
     52     def parase_data(self):
     53         while True:
     54             #q2'  response 队列 出队
     55             data_str = self.response_queue.get().content.decode("gbk")
     56 
     57             #a,转换类型
     58             data_html = etree.HTML(data_str)
     59             #b,解析数据
     60             div_lists = data_html.xpath('//div[@class="post_recommend_new"]')  #获取所有的帖子
     61 
     62             for div in div_lists:
     63                 title = div.xpath('.//h3/a/text()')[0]
     64                 #q3 解析后的data 入队列
     65                 self.parsed_data_queue.put(title)
     66 
     67             # response_queue出队列,如果想让计数器 减一,需要如下设置:
     68             self.response_queue.task_done()
     69 
     70     #4,保存数据
     71     def save_to_file(self):
     72         while True:
     73             # parsed_data_queue 出队,
     74             data_str = self.parsed_data_queue.get()
     75             print(data_str)
     76 
     77             # parsed_data_queue 出队列,如果想让计数器 减一,需要如下设置:
     78             self.parsed_data_queue.task_done()
     79 
     80     def _start(self):
     81         # 开多线程 步骤: 1,创建线程 ,2, .setDameon(True)设置守护线程  3, .start()  开始执行
     82         th_lists = []
     83         #1 获取url 线程
     84         th_url = threading.Thread(target=self.get_url_lists )  #不需要传参数
     85         th_lists.append(th_url)
     86         #2 发送请求线程
     87         # 把发送请求线程 开多一点:
     88         for i in range(4):
     89             #手动设置 并发数
     90             th_send = threading.Thread(target=self.send_requests )  #不需要传参数
     91             th_lists.append(th_send)
     92 
     93         #3 解析数据线程
     94         th_parse = threading.Thread(target=self.parase_data )  #不需要传参数
     95         th_lists.append(th_parse)
     96         #4 保存数据线程
     97         th_save = threading.Thread(target=self.save_to_file)  # 不需要传参数
     98         th_lists.append(th_save)
     99 
    100         #对四个线程 统一 设置守护线程 和 开始
    101         for th in th_lists:
    102             th.setDaemon(True)
    103             th.start()
    104 
    105         #注意,此时用队列来阻塞主线程 当三个队列都为0 时, 才不阻塞.
    106         for q in [self.parsed_data_queue,self.response_queue,self.url_queue]:
    107             q.join()
    108 
    109 
    110     def run(self):
    111         start_time = time.time()
    112         self._start()
    113         end_time = time.time()
    114 
    115         print("总耗时:{} s".format(end_time-start_time))  #输出:   总耗时:7.036543369293213 s
    116 
    117 
    118 if __name__ == '__main__':
    119     QiuShiBaiKe().run()
    请求线程 变为四个线程来发请求....

    此时的速度 快了一倍....

      1 import requests
      2 import random
      3 import json
      4 from lxml import etree
      5 import time
      6 import threading
      7 from queue import Queue
      8 
      9 #用户代理池
     10 USER_AGENT_LISTS = []
     11 with open("zcb/USER_AGENT.json","r",encoding="utf8") as f:
     12     USER_AGENT_LISTS = json.load(f)
     13 # PROXY_LISTS_ALL = []
     14 # with open("zcb/PROXY_LISTS.json", "r", encoding="utf8") as f:
     15 #     PROXY_LISTS_ALL = json.load(f)
     16 
     17 class QiuShiBaiKe:
     18     def __init__(self):
     19         self.base_url = "http://www.lovehhy.net/News/List/ALL/{}/"
     20         self.headers = {"User-Agent": random.choice(USER_AGENT_LISTS)}
     21 
     22         #创建三个队列
     23         self.url_queue = Queue() # url 队列
     24         self.response_queue = Queue() # response 队列
     25         self.parsed_data_queue = Queue() # parse_data_queue 队列
     26 
     27 
     28     #1, 获取所有的url
     29     def get_url_lists(self):   # --> url_lists []
     30         for i in range(1,21):  #爬取 1-20 页 !
     31         # for i in range(1,2):  #爬取 1-2页 !
     32             #q1 url 入队列
     33             self.url_queue.put(self.base_url.format(i))
     34 
     35     #2, 发送请求
     36     def send_requests(self):
     37         while True:
     38             #q1' url 出队列
     39             url = self.url_queue.get()
     40 
     41             time.sleep(1)  #加上延迟
     42             response = requests.get(url,headers = self.headers)
     43 
     44             #q2 响应对像  入队列
     45             self.response_queue.put(response)
     46 
     47             # url_response 出队列,如果想让计数器 减一,需要如下设置:
     48             self.url_queue.task_done()
     49 
     50 
     51     #3,解析数据
     52     def parase_data(self):
     53         while True:
     54             #q2'  response 队列 出队
     55             data_str = self.response_queue.get().content.decode("gbk")
     56 
     57             #a,转换类型
     58             data_html = etree.HTML(data_str)
     59             #b,解析数据
     60             div_lists = data_html.xpath('//div[@class="post_recommend_new"]')  #获取所有的帖子
     61 
     62             for div in div_lists:
     63                 title = div.xpath('.//h3/a/text()')[0]
     64                 #q3 解析后的data 入队列
     65                 self.parsed_data_queue.put(title)
     66 
     67             # response_queue出队列,如果想让计数器 减一,需要如下设置:
     68             self.response_queue.task_done()
     69 
     70     #4,保存数据
     71     def save_to_file(self):
     72         while True:
     73             # parsed_data_queue 出队,
     74             data_str = self.parsed_data_queue.get()
     75             print(data_str)
     76 
     77             # parsed_data_queue 出队列,如果想让计数器 减一,需要如下设置:
     78             self.parsed_data_queue.task_done()
     79 
     80     def _start(self):
     81         # 开多线程 步骤: 1,创建线程 ,2, .setDameon(True)设置守护线程  3, .start()  开始执行
     82         th_lists = []
     83         #1 获取url 线程
     84         th_url = threading.Thread(target=self.get_url_lists )  #不需要传参数
     85         th_lists.append(th_url)
     86         #2 发送请求线程
     87         # 把发送请求线程 开多一点:
     88         for i in range(20):
     89             #手动设置 并发数
     90             th_send = threading.Thread(target=self.send_requests )  #不需要传参数
     91             th_lists.append(th_send)
     92 
     93         #3 解析数据线程
     94         th_parse = threading.Thread(target=self.parase_data )  #不需要传参数
     95         th_lists.append(th_parse)
     96         #4 保存数据线程
     97         th_save = threading.Thread(target=self.save_to_file)  # 不需要传参数
     98         th_lists.append(th_save)
     99 
    100         #对四个线程 统一 设置守护线程 和 开始
    101         for th in th_lists:
    102             th.setDaemon(True)
    103             th.start()
    104 
    105         #注意,此时用队列来阻塞主线程 当三个队列都为0 时, 才不阻塞.
    106         for q in [self.url_queue,self.response_queue,self.parsed_data_queue]:
    107             q.join()
    108 
    109 
    110     def run(self):
    111         start_time = time.time()
    112         self._start()
    113         end_time = time.time()
    114 
    115         print("总耗时:{} s".format(end_time-start_time))  #输出:   总耗时:3.2620434761047363 s
    116 
    117 
    118 if __name__ == '__main__':
    119     QiuShiBaiKe().run()
    直接是 多少个url 开多少个线程 。太猛了hahah

    但是,一般还是要合理设置 并发数,这个要考虑当前cpu ,当前带宽等。  

    例如:5M 带宽:5M:5000kb ,  

    ==================================2================================

      1 import requests
      2 import random
      3 import json
      4 from lxml import etree
      5 import time
      6 from queue import Queue #线程队列!
      7 import threading
      8 
      9 #用户代理池
     10 USER_AGENT_LISTS = []
     11 with open("USER_AGENT.json","r",encoding="utf8") as f:
     12     USER_AGENT_LISTS = json.load(f)
     13 PROXY_LISTS = []
     14 with open("PROXY_LISTS.json", "r", encoding="utf8") as f:
     15     PROXY_LISTS = json.load(f)
     16 
     17 class QiuShiBaiKe:
     18     def __init__(self):
     19         self.base_url = "http://www.lovehhy.net/News/List/ALL/{}"
     20         self.url_queues = Queue()   #url 队列
     21         self.response_queues = Queue() #response 队列
     22         self.parsed_data_queues = Queue() #parsed_data 队列
     23 
     24     def getUrl_lists(self):
     25         for i in range(1,51): #50个 url 的数据!
     26             self.url_queues.put(self.base_url.format(i))
     27 
     28     def getResponses(self):
     29         while True:
     30             myHeaders = {"User-Agent":random.choice(USER_AGENT_LISTS)}
     31             response = None
     32             url = None
     33             while True:
     34                 try:
     35                     url = self.url_queues.get()
     36                     self.url_queues.task_done()
     37                     response = requests.get(url,headers = myHeaders,proxies = random.choice(PROXY_LISTS),timeout = 3)
     38                     self.response_queues.put(response)
     39                     time.sleep(1)
     40                     break
     41                 except Exception as e:
     42                     print("出现异常")
     43                     self.url_queues.put(url)
     44                     self.getResponses()
     45 
     46     def parse_data(self,response):
     47         #1 转换类型
     48         if response is None:
     49             return None
     50         data_html = etree.HTML(response.content.decode("gbk"))
     51         #2, 解析数据
     52         if data_html is None:
     53             return None
     54         titles = data_html.xpath('//div[@class="post_recommend_new"]//h3/a/text()')  # 获取所有的帖子标题!
     55         return titles
     56 
     57     def getParsedData(self):
     58         while True:
     59             response = self.response_queues.get()
     60             self.response_queues.task_done()
     61             if self.parse_data(response) is None:
     62                 continue
     63             for title in self.parse_data(response):
     64                 self.parsed_data_queues.put(title)
     65 
     66     def save_to_file(self):
     67         while True:
     68             parsed_data = self.parsed_data_queues.get()
     69             print(parsed_data)
     70             self.parsed_data_queues.task_done()
     71 
     72 
     73     def _start(self):
     74         self.getUrl_lists() #使得 URL 存放到 url_queue 中 !
     75 
     76         #开启线程!  线程可以最多开 5*cpu = 20
     77         # 5个线程 去  获取response  !
     78         thread_lists = []
     79         for i in range(5):
     80             thread = threading.Thread(target=self.getResponses)
     81             thread_lists.append(thread)
     82 
     83         # 1个线程 去 解析数据
     84         thread_parse_data = threading.Thread(target=self.getParsedData)
     85         thread_lists.append(thread_parse_data)
     86 
     87 
     88         # 1个线程去 保存数据
     89         thread_save_to_file = threading.Thread(target=self.save_to_file)
     90         thread_lists.append(thread_save_to_file)
     91 
     92 
     93         #统一设置所有线程为 守护线程 并  开始 线程
     94         for thread in thread_lists:
     95             thread.daemon = True
     96             thread.start()
     97 
     98         # 统一阻塞 主线程 这里使用队列 来阻塞主线程   !
     99         self.url_queues.join()
    100         self.response_queues.join()
    101         self.parsed_data_queues.join()
    102         time.sleep(10)
    103 
    104 
    105     def run(self):
    106         t = time.time()
    107         self._start()
    108         print("总耗时:",time.time()- t)  #总耗时:0.06149625778198242
    109 
    110 if __name__ == '__main__':
    111     #http://www.lovehhy.net/News/List/ALL/1
    112     QiuShiBaiKe().run()
    开5个线程来爬取数据 !
      1 import requests
      2 import random
      3 import json
      4 from lxml import etree
      5 import time
      6 from queue import Queue #线程队列!
      7 import threading
      8 
      9 class QiuShiBaiKe:
     10     def __init__(self):
     11         self.base_url = "http://www.lovehhy.net/News/List/ALL/{}"
     12         self.USER_AGENT_LISTS = []
     13         self.PROXY_LISTS = []
     14         self.init_ua_proxy()
     15 
     16         self.url_queues = Queue()   #url 队列
     17         self.response_queues = Queue() #response 队列
     18         self.parsed_data_queues = Queue() #parsed_data 队列
     19         self.count = 0
     20 
     21     def init_ua_proxy(self):
     22         with open("USER_AGENT.json", "r", encoding="utf8") as f:
     23             self.USER_AGENT_LISTS = json.load(f)
     24         with open("PROXY_LISTS.json", "r", encoding="utf8") as f:
     25             self.PROXY_LISTS = json.load(f)
     26 
     27     def getUrl_lists(self):
     28         for i in range(1,301):  #301
     29             self.url_queues.put(self.base_url.format(i))
     30 
     31     def getResponses(self):
     32         while True:
     33             response = None  #仅仅是声明 作用
     34             url = self.url_queues.get()
     35             self.url_queues.task_done()
     36             while True:
     37                 try:
     38                     myHeaders = {"User-Agent": random.choice(self.USER_AGENT_LISTS)}
     39                     response = requests.get(url,headers = myHeaders,proxies = random.choice(self.PROXY_LISTS),timeout = 3)
     40                     self.response_queues.put(response)
     41                     time.sleep(1)
     42                     break
     43                 except Exception as e:
     44                     print("出现异常...",e)
     45                     # print("urlqueue size: ",self.url_queues.qsize())
     46                     self.url_queues.put(url)
     47                     print("urlqueue size: ",self.url_queues.qsize())
     48                     self.getResponses()
     49 
     50     def parse_data(self,response):
     51         #1 转换类型
     52         if response is None:
     53             return None
     54 
     55         data_html = None
     56         try:
     57             data_html = etree.HTML(response.content.decode("gbk"))
     58         except Exception as e:
     59             print("解析数据出现错误!")
     60         #2, 解析数据
     61         if data_html is None:
     62             return None
     63         titles = data_html.xpath('//div[@class="post_recommend_new"]//h3/a/text()')  # 获取所有的帖子标题!
     64         return titles
     65 
     66     def getParsedData(self):
     67         while True:
     68             response = self.response_queues.get()
     69             self.response_queues.task_done()
     70             if self.parse_data(response) is None:
     71                 continue
     72             for title in self.parse_data(response):
     73                 self.parsed_data_queues.put(title)
     74 
     75     def save_to_file(self):
     76         while True:
     77             parsed_data = self.parsed_data_queues.get()
     78             # print(parsed_data)
     79             self.count += 1
     80             self.parsed_data_queues.task_done()
     81 
     82     def _start(self):
     83         self.getUrl_lists() #使得 URL 存放到 url_queue 中 !
     84 
     85         #开启线程!  线程可以最多开 5*cpu = 20
     86         # 5个线程 去  获取response  !
     87         thread_lists = []
     88         for i in range(20): #5*cpu
     89             thread = threading.Thread(target=self.getResponses)
     90             thread_lists.append(thread)
     91 
     92         # 1个线程 去 解析数据
     93         thread_parse_data = threading.Thread(target=self.getParsedData)
     94         thread_lists.append(thread_parse_data)
     95 
     96 
     97         # 1个线程去 保存数据
     98         thread_save_to_file = threading.Thread(target=self.save_to_file)
     99         thread_lists.append(thread_save_to_file)
    100 
    101 
    102         #统一设置所有线程为 守护线程 并  开始 线程
    103         for thread in thread_lists:
    104             thread.daemon = True
    105             thread.start()
    106 
    107         # 统一阻塞 主线程 这里使用队列 来阻塞主线程   !
    108         self.url_queues.join()
    109         self.response_queues.join()
    110         self.parsed_data_queues.join()
    111 
    112         for i in range(5):
    113             time.sleep(5) # timeout + sleep  = 5
    114             self.url_queues.join()
    115             self.response_queues.join()
    116             self.parsed_data_queues.join()
    117 
    118     def run(self):
    119         t = time.time()
    120         self._start()
    121         print("总耗时:",time.time()- t -25)  #总耗时:0.06149625778198242
    122         print("总共有 :",self.count)
    123         return self.count
    124 if __name__ == '__main__':
    125     #http://www.lovehhy.net/News/List/ALL/1
    126     QiuShiBaiKe().run()
    一般开多线程 就开 5* cpu 个! 这个算是最终版本的多线程!

     

      1 import requests
      2 import random
      3 import json
      4 from lxml import etree
      5 import time
      6 from queue import Queue #线程队列!
      7 import threading
      8 
      9 class QiuShiBaiKe:
     10     def __init__(self):
     11         self.base_url = "http://www.lovehhy.net/News/List/ALL/{}"
     12         self.USER_AGENT_LISTS = []
     13         self.PROXY_LISTS = []
     14         self.init_ua_proxy()
     15 
     16         self.url_queues = Queue()   #url 队列
     17         self.response_queues = Queue() #response 队列
     18         self.parsed_data_queues = Queue() #parsed_data 队列
     19         self.count = 0
     20         self.exceptionNum = 0
     21 
     22     def init_ua_proxy(self):
     23         with open("USER_AGENT.json", "r", encoding="utf8") as f:
     24             self.USER_AGENT_LISTS = json.load(f)
     25         with open("PROXY_LISTS.json", "r", encoding="utf8") as f:
     26             self.PROXY_LISTS = json.load(f)
     27 
     28     def getUrl_lists(self):
     29         #  400   ----》  480
     30         #  350  -----》 417
     31         # 300   ---》  318
     32         for i in range(1,300):  #301
     33             self.url_queues.put(self.base_url.format(i))
     34 
     35     def getResponses(self):
     36         while True:
     37             response = None  #仅仅是声明 作用
     38             url = self.url_queues.get()
     39             self.url_queues.task_done()
     40             while True:
     41                 try:
     42                     myHeaders = {"User-Agent": random.choice(self.USER_AGENT_LISTS)}
     43                     response = requests.get(url,headers = myHeaders,proxies = random.choice(self.PROXY_LISTS),timeout = 3)
     44                     self.response_queues.put(response)
     45                     time.sleep(1)
     46                     break
     47                 except Exception as e:
     48                     print("出现异常...",e)
     49                     self.exceptionNum += 1
     50                     # print("urlqueue size: ",self.url_queues.qsize())
     51                     self.url_queues.put(url)
     52                     print("urlqueue size: ",self.url_queues.qsize())
     53                     self.getResponses()
     54 
     55     def parse_data(self,response):
     56         #1 转换类型
     57         if response is None:
     58             return None
     59         data_html = None
     60         try:
     61             data_html = etree.HTML(response.content.decode("gbk"))
     62         except Exception as e:
     63             print("解析数据出现错误!")
     64         #2, 解析数据
     65         if data_html is None:
     66             return None
     67         titles = data_html.xpath('//div[@class="post_recommend_new"]//h3/a/text()')  # 获取所有的帖子标题!
     68         return titles
     69 
     70     def getParsedData(self):
     71         while True:
     72             response = self.response_queues.get()
     73             self.response_queues.task_done()
     74             titles = self.parse_data(response)
     75             if titles is None:
     76                 continue
     77             for title in titles:
     78                 self.parsed_data_queues.put(title)
     79 
     80     def save_to_file(self):
     81         while True:
     82             parsed_data = self.parsed_data_queues.get()
     83             # print(parsed_data)
     84             self.count += 1
     85             self.parsed_data_queues.task_done()
     86 
     87     def _start(self):
     88         self.getUrl_lists() #使得 URL 存放到 url_queue 中 !
     89 
     90         #开启线程!  线程可以最多开 5*cpu = 20
     91         # 5个线程 去  获取response  !
     92         thread_lists = []
     93         for i in range(20): #5*cpu
     94             thread = threading.Thread(target=self.getResponses)
     95             thread_lists.append(thread)
     96 
     97         # 1个线程 去 解析数据
     98         thread_parse_data = threading.Thread(target=self.getParsedData)
     99         thread_lists.append(thread_parse_data)
    100 
    101 
    102         # 1个线程去 保存数据
    103         thread_save_to_file = threading.Thread(target=self.save_to_file)
    104         thread_lists.append(thread_save_to_file)
    105 
    106 
    107         #统一设置所有线程为 守护线程 并  开始 线程
    108         for thread in thread_lists:
    109             thread.daemon = True
    110             thread.start()
    111 
    112         # 统一阻塞 主线程 这里使用队列 来阻塞主线程   !
    113         self.url_queues.join()
    114         self.response_queues.join()
    115         self.parsed_data_queues.join()
    116 
    117         for i in range(5):
    118             time.sleep(6) # timeout + sleep  = 5
    119             self.url_queues.join()
    120             self.response_queues.join()
    121             self.parsed_data_queues.join()
    122 
    123     def run(self):
    124         t = time.time()
    125         self._start()
    126         print("总耗时:",time.time()- t)  #总耗时:0.06149625778198242
    127         print("总共有 :",self.count)
    128         print("总共发生异常数:",self.exceptionNum)
    129 
    130         return self.count
    131 if __name__ == '__main__':
    132     #http://www.lovehhy.net/News/List/ALL/1
    133     QiuShiBaiKe().run()
    另外 版本.... 参考, 带有发生异常的数目

    多进程:

    多进程 使用的队列  是 : 

    from multiprocessing.queue import JoinableQueue  as Queue  

    起别名 是为了  和 线程的程序统一!! 

    线程池:  

    from multiprocessing.dummy import Pool   

      1 import requests
      2 import random
      3 import json
      4 from lxml import etree
      5 import time
      6 from multiprocessing.dummy import Pool as ThreadPool #线程池!
      7 from queue import Queue #线程队列!
      8 
      9 class QiuShiBaiKe:
     10     def __init__(self):
     11         self.base_url = "http://www.lovehhy.net/News/List/ALL/{}"
     12         self.USER_AGENT_LISTS = []
     13         self.PROXY_LISTS = []
     14         self.init_ua_proxy()
     15 
     16         self.url_queues = Queue()   #url 队列
     17         self.threadPool = ThreadPool(5)  #线程池
     18         self.count = 0
     19 
     20         self.task_num = 0
     21         self.solved_task_num = 0
     22 
     23     def init_ua_proxy(self):
     24         with open("USER_AGENT.json", "r", encoding="utf8") as f:
     25             self.USER_AGENT_LISTS = json.load(f)
     26         with open("PROXY_LISTS.json", "r", encoding="utf8") as f:
     27             self.PROXY_LISTS = json.load(f)
     28     def getUrl_lists(self):
     29         for i in range(1,301):  #301
     30             self.url_queues.put(self.base_url.format(i))
     31             self.task_num += 1
     32     #===================================
     33     def getResponses(self,url):
     34         response = None  #仅仅是声明 作用
     35         while True:
     36             try:
     37                 myHeaders = {"User-Agent": random.choice(self.USER_AGENT_LISTS)}
     38                 response = requests.get(url,headers = myHeaders,proxies = random.choice(self.PROXY_LISTS),timeout = 3)
     39                 time.sleep(1)
     40                 break
     41             except Exception as e:
     42                 print("出现异常...",e)
     43                 print("urlqueue size: ",self.url_queues.qsize())
     44                 self.getResponses(url)
     45         return response
     46 
     47     def parse_data(self,response):
     48         #1 转换类型
     49         if response is None:
     50             return None
     51 
     52         data_html = None
     53         try:
     54             data_html = etree.HTML(response.content.decode("gbk"))
     55         except Exception as e:
     56             print("解析数据出现错误!")
     57         #2, 解析数据
     58         if data_html is None:
     59             return None
     60         titles = data_html.xpath('//div[@class="post_recommend_new"]//h3/a/text()')  # 获取所有的帖子标题!
     61         return titles
     62     def getParsedData(self,response):
     63         titles = self.parse_data(response)
     64         if titles is None:
     65             return None
     66         return titles
     67 
     68     def save_to_file(self,titles):
     69         if titles is not None:
     70             for title in titles:
     71                 # print(title)
     72                 self.count += 1
     73     #===================================
     74 
     75     # 我们的主任务!!!
     76     def _start(self):
     77         url = self.url_queues.get()
     78         self.url_queues.task_done()
     79 
     80         response = self.getResponses(url)
     81         titles = self.getParsedData(response)
     82         self.save_to_file(titles)
     83         self.solved_task_num += 1
     84 
     85     def cl_bk(self,temp):  #temp  一定要有
     86         self.threadPool.apply_async(self._start, callback=self.cl_bk)
     87         # print(temp)
     88     def async_entry(self):
     89         self.getUrl_lists() # 首先把构建所有的url
     90 
     91         for i in range(5): # 一次看 20个线程
     92             self.threadPool.apply_async(self._start,callback=self.cl_bk)
     93 
     94         while True: # 在此阻塞 主线程 !
     95             #最重要的问题是:什么时候 解阻塞!  当  任务的已经解决数  大于  总任务数  的时候   !
     96             if self.solved_task_num >=  self.task_num :
     97                 break
     98             time.sleep(0.1)
     99 
    100     def run(self):
    101         t = time.time()
    102         self.async_entry()
    103         print("总耗时:",time.time()- t)
    104         print("总共有 :",self.count)
    105 
    106 if __name__ == '__main__':
    107     #http://www.lovehhy.net/News/List/ALL/1
    108     QiuShiBaiKe().run()
    View Code

    协程:

    上面 的线程池 也没用close !  

      1 from gevent import monkey
      2 from gevent.pool import Pool as gPool   #协程池
      3 monkey.patch_all()
      4 import gevent
      5 
      6 import requests
      7 import random
      8 import json
      9 from lxml import etree
     10 import time
     11 
     12 from queue import Queue #线程队列!
     13 
     14 class QiuShiBaiKe:
     15     def __init__(self):
     16         self.base_url = "http://www.lovehhy.net/News/List/ALL/{}"
     17         self.USER_AGENT_LISTS = []
     18         self.PROXY_LISTS = []
     19         self.init_ua_proxy()
     20 
     21         self.url_queues = Queue()   #url 队列
     22         self.gPool = gPool(5)  #线程池
     23         self.count = 0
     24 
     25         self.task_num = 0
     26         self.solved_task_num = 0
     27 
     28     def init_ua_proxy(self):
     29         with open("USER_AGENT.json", "r", encoding="utf8") as f:
     30             self.USER_AGENT_LISTS = json.load(f)
     31         with open("PROXY_LISTS.json", "r", encoding="utf8") as f:
     32             self.PROXY_LISTS = json.load(f)
     33     def getUrl_lists(self):
     34         for i in range(1,5):  #301
     35             self.url_queues.put(self.base_url.format(i))
     36             self.task_num += 1
     37     #===================================
     38     def getResponses(self,url):
     39         response = None  #仅仅是声明 作用
     40         while True:
     41             try:
     42                 myHeaders = {"User-Agent": random.choice(self.USER_AGENT_LISTS)}
     43                 response = requests.get(url,headers = myHeaders,proxies = random.choice(self.PROXY_LISTS),timeout = 3)
     44                 time.sleep(1)
     45                 break
     46             except Exception as e:
     47                 print("出现异常...",e)
     48                 print("urlqueue size: ",self.url_queues.qsize())
     49                 self.getResponses(url)
     50         return response
     51 
     52     def parse_data(self,response):
     53         #1 转换类型
     54         if response is None:
     55             return None
     56 
     57         data_html = None
     58         try:
     59             data_html = etree.HTML(response.content.decode("gbk"))
     60         except Exception as e:
     61             print("解析数据出现错误!")
     62         #2, 解析数据
     63         if data_html is None:
     64             return None
     65         titles = data_html.xpath('//div[@class="post_recommend_new"]//h3/a/text()')  # 获取所有的帖子标题!
     66         return titles
     67     def getParsedData(self,response):
     68         titles = self.parse_data(response)
     69         if titles is None:
     70             return None
     71         return titles
     72 
     73     def save_to_file(self,titles):
     74         if titles is not None:
     75             for title in titles:
     76                 print(title)
     77                 self.count += 1
     78     #===================================
     79 
     80     # 我们的主任务!!!
     81     def _start(self):
     82         url = self.url_queues.get()
     83         self.url_queues.task_done()
     84 
     85         response = self.getResponses(url)
     86         titles = self.getParsedData(response)
     87         self.save_to_file(titles)
     88         self.solved_task_num += 1
     89 
     90     def cl_bk(self,temp):  #temp  一定要有
     91         self.gPool.apply_async(self._start, callback=self.cl_bk)
     92         # print(temp)
     93     def async_entry(self):
     94         self.getUrl_lists() # 首先把构建所有的url
     95 
     96         for i in range(5): # 5个线程
     97             self.gPool.apply_async(self._start,callback=self.cl_bk)
     98 
     99         while True: # 在此阻塞 主线程 !
    100             #最重要的问题是:什么时候 解阻塞!  当  任务的已经解决数  大于  总任务数  的时候   !
    101             if self.solved_task_num >=  self.task_num :
    102                 break
    103             time.sleep(0.1)
    104 
    105     def run(self):
    106         t = time.time()
    107         self.async_entry()
    108         print("总耗时:",time.time()- t)
    109         print("总共有 :",self.count)
    110 
    111 if __name__ == '__main__':
    112     #http://www.lovehhy.net/News/List/ALL/1
    113     QiuShiBaiKe().run()
    协程池 ,感觉不如多线程好!

    selenium 的基本使用:

     1 from selenium import webdriver
     2 
     3 
     4 if __name__ == '__main__':
     5     # #1, 创建浏览器 对象
     6     driver = webdriver.Chrome()
     7     # #2, get发送请求
     8     driver.get("http://www.jsons.cn/urlencode/")
     9 
    10     driver.save_screenshot("01.png")
    11 
    12     # 新开了一个 窗口!
    13     element = driver.find_element_by_xpath('//div[@class="copyright"]//span[2]/a')
    14     element.click()
    15 
    16     # 查看浏览器 打开的窗口
    17     print(driver.window_handles)
    18 
    19     #打开 新的窗口
    20     # driver.switch_to_window(driver.window_handles[1])
    21     driver.switch_to.window(driver.window_handles[1])
    22     driver.save_screenshot("02.png")
    23 
    24 
    25     # #4,关闭浏览器
    26     # driver.quit()
    27 
    28     pass
    selenium 的基本使用
  • 相关阅读:
    H面试程序(0):字符串一些常用函数的实现
    ctype.h头文件
    poj 3657
    UVA10294项链和手镯(等价类计数问题)
    UVA11375火柴(递推+大数)
    UVA11375火柴(递推+大数)
    UVA11388GCD LCM
    UVA11388GCD LCM
    UVA10943简单递推
    UVA10943简单递推
  • 原文地址:https://www.cnblogs.com/zach0812/p/12014279.html
Copyright © 2011-2022 走看看