zoukankan      html  css  js  c++  java
  • 面试官问我会ES么,我说不会,抓紧学起【ES(一)聚合分析篇】

    ES聚合分析

    1.metric(指标)聚合

    1.1 单值分析

    • min 求指定字段的最小值

      # 求价格的最小值
      {
          "size":0,
          "aggs":{
              "min_price":{
                  "min":{
                      "field":"price"
                  }
              }
          }
      }
      
    • max 求指定字段的最大值

      # 求价格的最大值
      {
          "size":0,
          "aggs":{
              "max_price":{
                  "max":{
                      "field":"price"
                  }
              }
          }
      }
      
    • avg 求指定字段的平均值

      # 求价格的平均值
      {
          "size":0,
          "aggs":{
              "avg_price":{
                  "avg":{
                      "field":"price"
                  }
              }
          }
      }
      
    • sum 求指定字段的总和

      # 求价格的总和
      {
          "size":0,
          "aggs":{
              "sum_price":{
                  "sum":{
                      "field":"price"
                  }
              }
          }
      }
      
    • value_count 统计某字段有值的文档数

      # 求price有值的个数
      {
          "aggs":{
              "price_count":{
                  "value_count":{
                      "field":"price"
                  }
              }
          }
      }
      
    • cardinality 去重计数

      #查询有多少种job(不分词下进行去重)
      {
          "aggs":{
              "job_count":{
                  "cardinality":{
                      "field":"job.keyword"
                  }
              }
          }
      }
      

    1.2 多值分析

    • stats 包含多种返回结果:min,max,avg,sum,count

      # 可以分析查询出以上的所有关于价格的单值结果
      {
          "aggs":{
              "price_stats":{
                  "stats":{
                      "field":"price"
                  }
              }
          }
      }
      
    • Extended stats 高级统计,比stats查询多四个结果:平方和、方差、标准差、平均值加/减两个标准差的区间

      {
          "aggs":{
              "extended_salary":{
                  "extended_stats":{
                      "field":"salary"
                  }
              }
          }
      }
      
    • Percentiles:占比百分位数统计

      # 统计salay每个值所在的百分比
      {
          "aggs":{
              "percentiles_salary":{
                  "percentiles":{
                      "field":"salary"
                  }
              }
          }
      }
      
      # 统计指定分位值的数据是多少
      {
          "aggs":{
              "percentiles_salary":{
                  "percentiles":{
                      "field":"salary",
                      "percents" : [75, 99, 99.9]
                  }
              }
          }
      }
      
    • Percentiles rank 统计值小于等于指定值的文档占比

      {
          "aggs":{
              "gge_perc_rank":{
                  "percentile_ranks":{
                      "field":"price",
                      "values":[
                          100,
                          200
                      ]
                  }
              }
          }
      }
      
    • top_hits:用于分桶后获取该桶内最匹配的顶部文档列表,即详情数据

      {
          "aggs":{
              "jobs":{
                  "terms":{
                      "field":"job.keyword",
                      "size":10
                  },
                  "aggs":{
                      "top_jobs":{
                          "top_hits":{
                              "size":10,
                              "sort":[
                                  {
                                      "age":{
                                          "order":"desc"
                                      }
                                  }
                              ]
                          }
                      }
                  }
              }
          }
      }
      

    2.bucket(桶)聚合

    2.1 Bucket的分桶策略

    • Terms:按照指定字段进行分桶

      {
          "size":0,
          "aggs":{
              "terms_jobs":{
                  "terms":{
                      "field":"job.keyword",
                      "size":5
                  }
              }
          }
      }
      
    • Range:按照指定字段的值的范围进行分桶

      {
          "size":0,
          "aggs":{
              "group_by_price":{
                  "range":{
                      "field":"price",
                      "ranges":[
                          {
                              "key":"<200",
                              "to":200
                          },
                          {
                              "from":200,
                              "to":400
                          },
                          {
                              "key":">400",
                              "from":400
                          }
                      ]
                  }
              }
          }
      }
      
    • Date_Range:按照日期字段的日期范围进行分桶

      {
          "size":0,
          "aggs":{
              "group_by_birth":{
                  "date_range":{
                      "field":"birth",
                      "format":"yyyy",
                      "ranges":[
                          {
                              "key":"2000年以前",
                              "to":"2000"
                          },
                          {
                              "key":"2000年 - 2020年",
                              "from":"2000",
                              "to":"2020"
                          },
                          {
                              "key":"2020年以后",
                              "from":"2020"
                          }
                      ]
                  }
              }
          }
      }
      
    • Histogram:直方图,以固定间隔的策略来分割数据

      {
          "size":0,
          "aggs":{
              "salary_hist":{
                  "histogram":{
                      "field":"salary",
                      "interval":5000,
                      "extended_bounds":{
                          "min":0,
                          "max":40000
                      }
                  }
              }
          }
      }
      
    • Date_Histogram:针对日期的直方图或柱状图,时序数据分析常用的。

      {
          "size":0,
          "aggs":{
              "by_year":{
                  "date_histogram":{
                      "field":"birth",
                      "interval":"year",
                      "format":"yyyy"
                  }
              }
          }
      }
      

    2.2 Bucket + Metric

    • 案例一:按照不同年龄段分桶,求每个年龄段的工资平均值

      {
          "size":0,
          "aggs":{
              "group_by_age":{
                  "range":{
                      "field":"age",
                      "ranges":[
                          {
                              "key":"<20",
                              "to":20
                          },
                          {
                              "key":"20 - 50",
                              "from":20,
                              "to":50
                          },
                          {
                              "key":">50",
                              "from":50
                          }
                      ]
                  },
                  "aggs":{
                      "avg_salary":{
                          "avg":{
                              "field":"salary"
                          }
                      }
                  }
              }
          }
      }
      
      
      
    • 案例二:分桶再分桶:先根据job分桶,再按照不同年龄划分

      {
          "size":0,
          "aggs":{
              "group_by_job":{
                  "terms":{
                      "field":"job",
                      "size":10
                  },
                  "aggs":{
                      "range_age":{
                          "range":{
                              "field":"age",
                              "ranges":[
                                  {
                                      "key":"<20",
                                      "to":20
                                  },
                                  {
                                      "key":"20 - 50",
                                      "from":20,
                                      "to":50
                                  },
                                  {
                                      "key":">50",
                                      "from":50
                                  }
                              ]
                          }
                      }
                  }
              }
          }
      }
      
    • 案例三:分桶后进行数据分析

      # 求出不同种工作的平均薪资
      {
          "size":0,
          "aggs":{
              "group_by_job":{
                  "terms":{
                      "field":"job",
                      "size":10
                  },
                  "aggs":{
                      "avg_salary":{
                          "stats":{
                              "field":"salary"
                          }
                      }
                  }
              }
          }
      }
      

    3.pipeline(管道)聚合

    3.1 Parent结果内嵌到现有的聚合分析结果中

    • Derivative(导数)
    • Moving Average(移动平均)
    • Cumulative Sum(累计求和)

    案例一:根据生日按月分组,求出每组的平均值,以及导数

    {
        "size":0,
        "aggs":{
            "group_by_birth":{
                "date_histogram":{
                    "field":"birth",
                    "interval":"mounth",
                    "format":"yyyy"
                },
                "aggs":{
                    "avg_salary":{
                        "avg":{
                            "field":"salary"
                        }
                    },
                    "derivative_avg_salary":{
                        "derivative":{
                            "buckets_path":"avg_salary"
                        }
                    }
                }
            }
        }
    }
    

    3.2 Sibing结果与现有聚合分析结果同级

    • Max/Min/Avg/Sum Bucket
    • Stats/Extended Stats Bucket
    • Percentiles Bucket

    案例一:根据job进行分组,求出每组的平均工资,找出这些组平均工资的最小值

    {
        "size":0,
        "aggs":{
            "group_by_job":{
                "terms":{
                    "field":"job",
                    "size":10
                },
                "aggs":{
                    "avg_salary":{
                        "avg":{
                            "field":"salary"
                        }
                    }
                }
            },
            "min_salary_by_job":{
                "min_bucket":{
                    "buckets_path":"group_by_job>avg_salary"
                }
            }
        }
    }
    

    4.ES中的Java API

    4.1 terms,range,date_range等聚合的演示

    • ES相关依赖

      <dependency>
      		<groupId>org.elasticsearch</groupId>
      		<artifactId>elasticsearch</artifactId>
      		<version>7.3.2</version>
      	  </dependency>
      	  <dependency>
      	   <groupId>org.elasticsearch.client</groupId>
      	   <artifactId>transport</artifactId>
      	   <version>7.3.2</version>
      	  </dependency>
      	  <dependency>
      		  <groupId>org.elasticsearch.client</groupId>
      		  <artifactId>elasticsearch-rest-client</artifactId>
      		  <version>7.3.2</version>
      	  </dependency>
      		<!-- Java High Level REST Client -->
      		<dependency>
      			<groupId>org.elasticsearch.client</groupId>
      			<artifactId>elasticsearch-rest-high-level-client</artifactId>
      			<version>7.3.2</version>
      		</dependency>
      
    • ES相关聚合部分的演示代码

      package com.lenovo.btit.elasticsearch;
      import org.apache.commons.lang3.StringUtils;
      import org.elasticsearch.action.search.SearchRequest;
      import org.elasticsearch.action.search.SearchResponse;
      import org.elasticsearch.client.RequestOptions;
      import org.elasticsearch.client.RestHighLevelClient;
      import org.elasticsearch.search.aggregations.AggregationBuilders;
      import org.elasticsearch.search.aggregations.bucket.range.DateRangeAggregationBuilder;
      import org.elasticsearch.search.aggregations.bucket.range.Range;
      import org.elasticsearch.search.aggregations.bucket.range.RangeAggregationBuilder;
      import org.elasticsearch.search.aggregations.bucket.terms.Terms;
      import org.elasticsearch.search.aggregations.bucket.terms.TermsAggregationBuilder;
      import org.elasticsearch.search.aggregations.metrics.Avg;
      import org.elasticsearch.search.builder.SearchSourceBuilder;
      
      import java.io.IOException;
      import java.util.HashMap;
      import java.util.List;
      import java.util.Map;
      
      /**
       * Es聚合分析使用
       *
       * @author: zangchuanlei
       * @date: 2021/7/11
       * @time: 15:18
       */
      public class EsServiceBucket {
      
        private RestHighLevelClient highLevelClient;
        // terms某个字段进行分组标识
        private final String BUCKET_TERMS = "1";
        // range按照某个范围进行分组(double,int)
        private final String BUCKET_RANGE = "2";
        // date_range按照时间范围进行分组
        private final String BUCKET_DATA_RANGE = "3";
      
      
        /**
         * @param bucketType 桶聚合类型
         * @param resultName 结果集名称
         * @param size       每页几个数据
         * @param indices    文档库名
         * @description 执行ES聚合分析查询
         * @author zangchuanlei
         * @date 2021/7/11 16:15
         */
        private Map<String, Long> query(String bucketType, String resultName, int size, String... indices) {
          // 获取搜索构建器
          SearchSourceBuilder sourceBuilder;
          switch (bucketType) {
            case BUCKET_TERMS:
              sourceBuilder = getSourceBuilderOfTerms(resultName, size);
              break;
            case BUCKET_RANGE:
              sourceBuilder = getSourceBuilderOfRange(resultName, size);
              break;
            case BUCKET_DATA_RANGE:
              sourceBuilder = getSourceBuilderOfDataRange(resultName, size);
              break;
            default:
              sourceBuilder = new SearchSourceBuilder();
              break;
          }
      
          //建立关于指定文档库的搜索请求
          SearchRequest searchRequest = new SearchRequest()
            .indices(indices)
            .source(sourceBuilder);
      
          //返回处理结果
          return getResultMapByBucket(bucketType,searchRequest, resultName);
        }
      
      
        /**
         * @param searchRequest 搜索请求
         * @param resultName    结果集名称
         * @description 处理搜索响应数据
         * @author zangchuanlei
         * @date 2021/7/11 16:41
         */
        private Map<String, Long> getResultMapByBucket(String bucketType, SearchRequest searchRequest, String resultName) {
          // 创建返回结果map容器
          Map<String, Long> rtnMap = new HashMap<>();
          try {
            SearchResponse searchResponse = highLevelClient.search(searchRequest, RequestOptions.DEFAULT);
      
            // 字段分组
            if (StringUtils.equals(BUCKET_TERMS, bucketType)) {
              // 根据结果集名称获取Terms
              Terms aggsTerm = searchResponse.getAggregations().get(resultName);
              //获得分组后的桶信息
              List<? extends Terms.Bucket> termBuckets = aggsTerm.getBuckets();
              termBuckets.forEach(b -> {
                rtnMap.put(b.getKeyAsString(), b.getDocCount());
                System.out.println("key:" + b.getKeyAsString());
                System.out.println("count:" + b.getDocCount());
                // 处理子聚合,打印每组的平均价格
                Avg averageBalance = b.getAggregations().get("price_avg");
                System.out.println("key = "+b.getKeyAsString()+"的价格平均值为:"+averageBalance.getValue());
              });
      
              // 范围分组
            } else if (StringUtils.equals(BUCKET_RANGE, bucketType) ||
              StringUtils.equals(BUCKET_DATA_RANGE, bucketType)) {
              Range aggsRange = searchResponse.getAggregations().get(resultName);
              List<? extends Range.Bucket> rangeBuckets = aggsRange.getBuckets();
              rangeBuckets.forEach(b->{
                  rtnMap.put(b.getKeyAsString(), b.getDocCount());
                });
            }
          } catch (IOException e) {
            e.printStackTrace();
          }
          return rtnMap;
        }
      
        /**
         * @param resultName 结果集名称
         * @param size       显示个数
         * @description 构建根据商品品牌分组,并计算每组的价格平均值
         * @author zangchuanlei
         * @date 2021/7/11 16:24
         */
        private SearchSourceBuilder getSourceBuilderOfTerms(String resultName, int size) {
          SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
          // step1:先根据品牌进行分组
          TermsAggregationBuilder aggregationBuilder = AggregationBuilders.terms(resultName)
            .field("bank.keyword");
      
          // step2:计算每个品牌的的平均价格
          aggregationBuilder.subAggregation(AggregationBuilders.avg("price_avg").field("price"));
      
          sourceBuilder.aggregation(aggregationBuilder);
          sourceBuilder.size(size).trackTotalHits(true);
          return sourceBuilder;
        }
      
        /**
         * @param resultName 结果集名称
         * @param size       显示个数
         * @description 构建根据商品价格范围分组的聚合查询条件
         * @author zangchuanlei
         * @date 2021/7/11 16:52
         */
        private SearchSourceBuilder getSourceBuilderOfRange(String resultName, int size) {
          SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
          RangeAggregationBuilder aggregationBuilder = AggregationBuilders.range(resultName)
            .field("price")
            // 分组范围:小于1000,1000-3000,大于3000
            .addUnboundedTo(1000).addRange(1000, 3000).addUnboundedFrom(3000);
          sourceBuilder.aggregation(aggregationBuilder);
          sourceBuilder.size(size).trackTotalHits(true);
          return sourceBuilder;
        }
      
        /**
         * @param resultName
         * @param size
         * @description 构建根据上市时间范围分组的聚合查询条件
         * @author zangchuanlei
         * @date 2021/7/11 17:05
         */
        private SearchSourceBuilder getSourceBuilderOfDataRange(String resultName, int size) {
          SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
          // 按照上市时间进行分组
          DateRangeAggregationBuilder aggregationBuilder = AggregationBuilders.dateRange(resultName).format("yyyy-MM-dd")
            .field("launch_date")
            .addUnboundedTo("2000-01-01以前", "2000-01-01")
            .addRange("2000-01-01至2010-12-31", "2000-01-01", "2010-12-31")
            .addUnboundedFrom("2010-12-31以后", "2010-12-31");
      
          sourceBuilder.aggregation(aggregationBuilder);
          sourceBuilder.size(size).trackTotalHits(true);
          return sourceBuilder;
        }
      }
      
      
  • 相关阅读:
    把信贷风险管理浓缩为50个要点(赶紧收藏吧)!
    AjaxControlToolkit没有通过WebResource.axd加载css导致ajaxToolkit:TabPanel无法显示正确的样式
    启动vmware中的虚拟机的时候,提示Failed to lock the file
    linq to xml There are multiple root elements.
    How to create a List of ValueTuple?
    SET IDENTITY_INSERT 和 DBCC CHECKIDENT
    NOT IN clause and NULL values
    ASP.NET Session and Forms Authentication and Session Fixation
    asp.net下的cookieName
    flywaydb and sql server
  • 原文地址:https://www.cnblogs.com/zaevn00001/p/15012436.html
Copyright © 2011-2022 走看看