zoukankan      html  css  js  c++  java
  • HDU1197--Specialized Four-Digit Numbers

    Specialized Four-Digit Numbers
    Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 2774 Accepted Submission(s): 2039


    Problem Description
    Find and list all four-digit numbers in decimal notation that have the property that the sum of its four digits equals the sum of its digits when represented in hexadecimal (base 16) notation and also equals the sum of its digits when represented in duodecimal (base 12) notation.

    For example, the number 2991 has the sum of (decimal) digits 2+9+9+1 = 21. Since 2991 = 1*1728 + 8*144 + 9*12 + 3, its duodecimal representation is 1893(12), and these digits also sum up to 21. But in hexadecimal 2991 is BAF16, and 11+10+15 = 36, so 2991 should be rejected by your program.

    The next number (2992), however, has digits that sum to 22 in all three representations (including BB016), so 2992 should be on the listed output. (We don't want decimal numbers with fewer than four digits - excluding leading zeroes - so that 2992 is the first correct answer.)


    Input
    There is no input for this problem.


    Output
    Your output is to be 2992 and all larger four-digit numbers that satisfy the requirements (in strictly increasing order), each on a separate line with no leading or trailing blanks, ending with a new-line character. There are to be no blank lines in the output. The first few lines of the output are shown below.


    Sample Input
    There is no input for this problem.


    Sample Output
    2992
    2993
    2994
    2995
    2996
    2997
    2998
    2999


    Source
    Pacific Northwest 2004


    Recommend
    Ignatius.L

     1 #include<cstdio>
     2 #include<iostream>
     3 #include<cmath>
     4 #include<cstring>
     5 using namespace std;
     6  
     7 int ten(int n)
     8 {
     9     int sum=0;
    10     while(n)
    11     {
    12         sum+=(n%10);
    13         n/=10;
    14     }
    15     return sum;
    16 }
    17  
    18 int tte(int n)
    19 {
    20     int sum=0;
    21     while(n)
    22     {
    23         sum+=(n%12);
    24         n/=12;
    25     }
    26     return sum;
    27 }
    28  
    29 int sixth(int n)
    30 {
    31     int sum=0;
    32     while(n)
    33     {
    34         sum+=(n%16);
    35         n/=16;
    36     }
    37     return sum;
    38 }
    39  
    40 bool cheak(int n)
    41 {
    42     if(ten(n)==tte(n)&&sixth(n)==ten(n)&&tte(n)==sixth(n))
    43         return true;
    44     return false;
    45 }
    46  
    47 int main()
    48 {
    49     for(int n=1000;n<=9999;n++)
    50     {
    51         if(cheak(n))
    52             printf("%d
    ",n);
    53     }
    54 }
    View Code
  • 相关阅读:
    21-MySQL-Ubuntu-快速回到SQL语句的行首和行末
    2- SQL语句的强化
    1-数据准备
    20-MySQL-Ubuntu-数据表的查询-子查询(九)
    19-MySQL-Ubuntu-数据表的查询-自关联(八)
    18-MySQL-Ubuntu-数据表的查询-连接(七)
    17-MySQL-Ubuntu-数据表的查询-分页(六)
    16-MySQL-Ubuntu-数据表的查询-分组与聚合(五)
    15-MySQL-Ubuntu-数据表的查询-聚合函数(四)
    14-MySQL-Ubuntu-数据表的查询-范围查询(三)
  • 原文地址:https://www.cnblogs.com/zafuacm/p/3185201.html
Copyright © 2011-2022 走看看