zoukankan      html  css  js  c++  java
  • HDU1068--Girls and Boys

    Girls and Boys
    Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 5673 Accepted Submission(s): 2532


    Problem Description
    the second year of the university somebody started a study on the romantic relations between the students. The relation “romantically involved” is defined between one girl and one boy. For the study reasons it is necessary to find out the maximum set satisfying the condition: there are no two students in the set who have been “romantically involved”. The result of the program is the number of students in such a set.

    The input contains several data sets in text format. Each data set represents one set of subjects of the study, with the following description:

    the number of students
    the description of each student, in the following format
    student_identifier:(number_of_romantic_relations) student_identifier1 student_identifier2 student_identifier3 ...
    or
    student_identifier:(0)

    The student_identifier is an integer number between 0 and n-1, for n subjects.
    For each given data set, the program should write to standard output a line containing the result.


    Sample Input
    7
    0: (3) 4 5 6
    1: (2) 4 6
    2: (0)
    3: (0)
    4: (2) 0 1
    5: (1) 0
    6: (2) 0 1
    3
    0: (2) 1 2
    1: (1) 0
    2: (1) 0


    Sample Output
    5
    2

    求最大独立集合=N-最大匹配

    因为这里的最大匹配为两次

    所以答案最大独立集合=N-最大匹配/2;

     1 #include<cstdio>
     2 #include<cmath>
     3 #include<iostream>
     4 #include<algorithm>
     5 #include<cstring>
     6 using namespace std;
     7 
     8 int n;
     9 int cx[1001],cy[1001];
    10 int mk[1001];
    11 int link[1001][1001];
    12 
    13 void init()
    14 {
    15     memset(cx,0xff,sizeof(cx));
    16     memset(cy,0xff,sizeof(cy));
    17     memset(link,0,sizeof(link));
    18 }
    19 
    20 int path(int u)
    21 {
    22     int v;
    23     for(v=0;v<n;v++)
    24     {
    25         if(!mk[v]&&link[u][v])
    26         {
    27             mk[v]=1;
    28             if(cy[v]==-1||path(cy[v]))
    29             {
    30                 cy[v]=u;
    31                 cx[u]=v;
    32                 return 1;
    33             }
    34         }
    35     }
    36     return 0;
    37 }
    38 
    39 int find()
    40 {
    41     int sum=0;
    42     int i;
    43     for(i=0;i<n;i++)
    44     {
    45         if(cx[i]==-1)
    46         {
    47             memset(mk,0,sizeof(mk));
    48             sum+=path(i);
    49         }
    50     }
    51     return sum;
    52 }
    53 
    54 int main()
    55 {
    56     while(scanf("%d",&n)!=EOF&&n!=0)
    57     {
    58         init();
    59         int i;
    60         for(i=0;i<n;i++)
    61         {
    62             int s,e,num;
    63             scanf("%d: (%d)",&s,&num);
    64             while(num--)
    65             {
    66                 scanf("%d",&e);
    67                 link[s][e]=1;
    68             }
    69         }
    70         int ans=find();
    71         printf("%d
    ",n-ans/2);
    72     }
    73     return 0;
    74 }
    View Code
  • 相关阅读:
    JDK动态代理
    回顾反射机制Method
    静态代理和动态代理
    使用jQuery实现ajax请求
    ajax函数
    事件 on
    函数2
    pytest-mock 调试实例
    Linux自启动tomcat
    第一次做性能测试
  • 原文地址:https://www.cnblogs.com/zafuacm/p/3216342.html
Copyright © 2011-2022 走看看