题目链接:http://codeforces.com/contest/1151/problem/B
题目大意:
给定一个n*m的矩阵,里面存放的是自然数,要求在每一行中选一个数,把他们异或起来后结果大于0,如果存在一种方案,就把每行所选数的列号输出。
分析:
我们只关注这些数的第i位二进制位,如果存在某一行比如说第k行,这一行中有第i位二进制位为1的数,也有第i位二进制位为0的数,那么可以说,这一行是决定性的行,无论其他行怎么选择,这一行只要根据其他行异或的结果,变通地选择第i位二进制位为0或1的数,必然能使最终结果大于0。
代码如下:
1 #pragma GCC optimize("Ofast") 2 #include <bits/stdc++.h> 3 using namespace std; 4 5 #define INIT() std::ios::sync_with_stdio(false);std::cin.tie(0); 6 #define Rep(i,n) for (int i = 0; i < (n); ++i) 7 #define For(i,s,t) for (int i = (s); i <= (t); ++i) 8 #define rFor(i,t,s) for (int i = (t); i >= (s); --i) 9 #define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i) 10 #define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i) 11 #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i) 12 #define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i) 13 14 #define pr(x) cout << #x << " = " << x << " " 15 #define prln(x) cout << #x << " = " << x << endl 16 17 #define LOWBIT(x) ((x)&(-x)) 18 19 #define ALL(x) x.begin(),x.end() 20 #define INS(x) inserter(x,x.begin()) 21 22 #define ms0(a) memset(a,0,sizeof(a)) 23 #define msI(a) memset(a,inf,sizeof(a)) 24 #define msM(a) memset(a,-1,sizeof(a)) 25 26 #define MP make_pair 27 #define PB push_back 28 #define ft first 29 #define sd second 30 31 template<typename T1, typename T2> 32 istream &operator>>(istream &in, pair<T1, T2> &p) { 33 in >> p.first >> p.second; 34 return in; 35 } 36 37 template<typename T> 38 istream &operator>>(istream &in, vector<T> &v) { 39 for (auto &x: v) 40 in >> x; 41 return in; 42 } 43 44 template<typename T1, typename T2> 45 ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) { 46 out << "[" << p.first << ", " << p.second << "]" << " "; 47 return out; 48 } 49 50 typedef long long LL; 51 typedef unsigned long long uLL; 52 typedef pair< double, double > PDD; 53 typedef pair< int, int > PII; 54 typedef set< int > SI; 55 typedef vector< int > VI; 56 typedef map< int, int > MII; 57 const double EPS = 1e-10; 58 const int inf = 1e9 + 9; 59 const LL mod = 1e9 + 7; 60 const int maxN = 2e5 + 7; 61 const LL ONE = 1; 62 63 int n, m; 64 int matrix[507][507]; 65 // rowOR[i]第i行全或的值 66 // rowAND[i]第i行全与的值 67 int rowOR[507], rowAND[507]; 68 // rowXOR[i]的二进制位如果为1,表示第i行在这一位上有0或1两种选择,否则只有一种 69 int rowXOR[507]; 70 // availableBits的二进制位如果为1,表示存在一种选择策略,异或完后这一位二进制位不为0 71 int availableBits; 72 int ans[507]; 73 int ansXOR; 74 75 int main(){ 76 INIT(); 77 cin >> n >> m; 78 For(i, 1, n) { 79 rowAND[i] = (1 << 11) - 1; 80 For(j, 1, m) { 81 cin >> matrix[i][j]; 82 rowOR[i] |= matrix[i][j]; 83 rowAND[i] &= matrix[i][j]; 84 } 85 rowXOR[i] = rowOR[i] ^ rowAND[i]; 86 availableBits |= rowXOR[i]; 87 } 88 89 int targetBit = LOWBIT(availableBits); 90 91 bool flag = true; 92 int tmp; 93 94 For(i, 1, n) { 95 if((rowXOR[i] & targetBit) != 0 && flag) { 96 tmp = i; // tmp保存决定性的行 97 flag = false; 98 continue; 99 } 100 ans[i] = 1;// 其他行无所谓,统一选择行首元素 101 ansXOR ^= matrix[i][1]; 102 } 103 104 if(!flag) { 105 For(j, 1, m) { 106 if((ansXOR ^ matrix[tmp][j]) != 0) { 107 ansXOR ^= matrix[tmp][j]; 108 ans[tmp] = j; 109 break; 110 } 111 } 112 } 113 114 if(ansXOR) { 115 cout << "TAK" << endl; 116 For(i, 1, n) cout << ans[i] << " "; 117 cout << endl; 118 } 119 else cout << "NIE" << endl; 120 return 0; 121 }