zoukankan      html  css  js  c++  java
  • CodeForces 1152C Neko does Maths

    题目链接:http://codeforces.com/problemset/problem/1152/C

    题目大意:

      给定自然数 a,b,求最小自然数 k,使得 lcm(a + k, b + k) 最小。

    分析:

      根据《九章算术》“更相减损法”:

    $$
    gcd(a, b) = gcd(a, a - b),a > b
    $$

      于是有:

    $$
    egin{align*}
    lcm(a+k, b+k) &= frac{(a + k) * (b + k)}{gcd(a + k, b + k)} \
    &= frac{(a + k) * (b + k)}{gcd(a + k, a - b)}
    end{align*}
    $$

      又 gcd(a + k, a - b) 的值必定是 a - b 的某一个因子,所以只要枚举 a - b 的所有因子即可。

      对于每一个因子 d,并不需要去求使得 gcd(a + k, a - b) == d 的最小 k,而只需要求使得 d|(a + k) 的最小 k 即可,因为如果此时的 gcd(a + k, a - b) > d,也就是说还有其他因子,那么这种情况在后面肯定会枚举到,并且会覆盖此时的答案。 

    代码如下:

      1 #include <bits/stdc++.h>
      2 using namespace std;
      3  
      4 #define INIT() std::ios::sync_with_stdio(false);std::cin.tie(0);
      5 #define Rep(i,n) for (int i = 0; i < (n); ++i)
      6 #define For(i,s,t) for (int i = (s); i <= (t); ++i)
      7 #define rFor(i,t,s) for (int i = (t); i >= (s); --i)
      8 #define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i)
      9 #define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i)
     10 #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i)
     11 #define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i)
     12  
     13 #define pr(x) cout << #x << " = " << x << "  "
     14 #define prln(x) cout << #x << " = " << x << endl
     15  
     16 #define LOWBIT(x) ((x)&(-x))
     17  
     18 #define ALL(x) x.begin(),x.end()
     19 #define INS(x) inserter(x,x.begin())
     20  
     21 #define ms0(a) memset(a,0,sizeof(a))
     22 #define msI(a) memset(a,inf,sizeof(a))
     23 #define msM(a) memset(a,-1,sizeof(a))
     24 
     25 #define MP make_pair
     26 #define PB push_back
     27 #define ft first
     28 #define sd second
     29  
     30 template<typename T1, typename T2>
     31 istream &operator>>(istream &in, pair<T1, T2> &p) {
     32     in >> p.first >> p.second;
     33     return in;
     34 }
     35  
     36 template<typename T>
     37 istream &operator>>(istream &in, vector<T> &v) {
     38     for (auto &x: v)
     39         in >> x;
     40     return in;
     41 }
     42  
     43 template<typename T1, typename T2>
     44 ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) {
     45     out << "[" << p.first << ", " << p.second << "]" << "
    ";
     46     return out;
     47 }
     48 
     49 inline int gc(){
     50     static const int BUF = 1e7;
     51     static char buf[BUF], *bg = buf + BUF, *ed = bg;
     52     
     53     if(bg == ed) fread(bg = buf, 1, BUF, stdin);
     54     return *bg++;
     55 } 
     56 
     57 inline int ri(){
     58     int x = 0, f = 1, c = gc();
     59     for(; c<48||c>57; f = c=='-'?-1:f, c=gc());
     60     for(; c>47&&c<58; x = x*10 + c - 48, c=gc());
     61     return x*f;
     62 }
     63  
     64 typedef long long LL;
     65 typedef unsigned long long uLL;
     66 typedef pair< double, double > PDD;
     67 typedef pair< int, int > PII;
     68 typedef pair< string, int > PSI;
     69 typedef set< int > SI;
     70 typedef vector< int > VI;
     71 typedef map< int, int > MII;
     72 typedef pair< LL, LL > PLL;
     73 typedef vector< LL > VL;
     74 typedef vector< VL > VVL;
     75 const double EPS = 1e-10;
     76 const LL inf = 0x7fffffff;
     77 const LL infLL = 0x7fffffffffffffffLL;
     78 const LL mod = 1e9 + 7;
     79 const int maxN = 5e5 + 7;
     80 const LL ONE = 1;
     81 const LL evenBits = 0xaaaaaaaaaaaaaaaa;
     82 const LL oddBits = 0x5555555555555555;
     83 
     84 inline LL gcd(LL x,LL y){
     85     LL t;
     86     if(!(x && y))return -1;
     87     while(y){
     88         t=x%y;
     89         x=y;
     90         y=t;
     91     }
     92     return x;
     93 }
     94 
     95 inline LL lcm(LL x,LL y){
     96     LL t = gcd(x,y);
     97     if(t == -1)return -1;
     98     return x/t*y;
     99 }
    100 
    101 LL a, b, minLcm = infLL, k, ans; 
    102 
    103 VL factors;
    104 inline void getFactors(int x) {
    105     for(int i = 1; i * i <= x; ++i) {
    106         if(x % i == 0) {
    107             factors.push_back(i);
    108             if(i != x / i)factors.push_back(x / i);
    109         }
    110     }
    111 } 
    112 
    113 inline LL getMinK(LL d) { 
    114     return (d - (a % d)) % d;
    115 }
    116 
    117 int main(){
    118     INIT();
    119     cin >> a >> b;
    120     if(a < b) swap(a, b);
    121     getFactors(a - b);
    122     
    123     Rep(i, factors.size()) {
    124         k = getMinK(factors[i]);
    125         LL tmp = (a + k) * (b + k) / factors[i];
    126         if(minLcm > tmp) {
    127             minLcm = tmp;
    128             ans = k;
    129         }
    130     }
    131     cout << ans << endl;
    132     return 0;
    133 }
    View Code
  • 相关阅读:
    前端开发中的设计模式
    前端常见的攻击
    前端笔试题
    JavaScript中的回调地狱及解决方法
    JavaScript中的编码解码
    JavaScript中操作节点
    前端常见面试题
    Vue的使用总结(2)
    JavaScript中的事件
    Vue的使用总结(1)
  • 原文地址:https://www.cnblogs.com/zaq19970105/p/10813736.html
Copyright © 2011-2022 走看看