题目链接:https://atcoder.jp/contests/abc127/tasks/abc127_e
题目大意
给定一个$N*M$的棋盘,二元组$(x, y),1 leq x leq N,1 leq y leq M$,表示棋盘上的某一个位置,现在要在棋盘上选 K 个不同的位置,记为$(x_1, y_1), (x_2, y_2), dots, (x_K, y_K)$,选择的相应代价为$sum_{i=1}^{K-1} sum_{j=i+1}^K (|x_i - x_j| + |y_i - y_j|)$,输出所有可能方案的代价总和。
分析
首先不难发现,x 和 y 是可以分开计算的,所以只需要求$sum_{i=1}^{K-1} sum_{j=i+1}^K |x_i - x_j|$即可,同理可计算$sum_{i=1}^{K-1} sum_{j=i+1}^K |y_i - y_j|$。
假如我们固定棋盘上 2 个位置$x_{i_1, j_1}, x_{i_2, j_2}$不动,在这种情况下,有$ binom{N*M-2}{K-2}$种选择方案,换句话说就是$|x_{i_1, j_1} - x_{i_2, j_2}|$出现了$ binom{N*M-2}{K-2}$次。
但枚举所有点对无疑是要超时的,为此我们可以枚举$d = |x_{i_1, j_1} - x_{i_2, j_2}|$,$d in [1, K - 1]$。
可以先找找规律,当 d == 1 时,看看有多少对$(x_{i_1, j_1}, x_{i_2, j_2})$是满足的。
可以发现,只要两个点纵坐标差值为1,就都满足。
于是当 d == 1 时,有$M^2 * (N - 1)$种$(x_{i_1, j_1}, x_{i_2, j_2})$满足$d == |x_{i_1, j_1} - x_{i_2, j_2}|$。
以此类推,可以找出规律:对于每个 d,都有$d * M^2 * (N - d)$种$(x_{i_1, j_1}, x_{i_2, j_2})$满足$d == |x_{i_1, j_1} - x_{i_2, j_2}|$。
那么对于每个 d,它对答案的贡献就为$ binom{N*M-2}{K-2} * d * M^2 * (N - d)$。
把所有的累加起来即可。
代码如下
1 #include <bits/stdc++.h> 2 using namespace std; 3 4 #define INIT() ios::sync_with_stdio(false);cin.tie(0);cout.tie(0); 5 #define Rep(i,n) for (int i = 0; i < (n); ++i) 6 #define For(i,s,t) for (int i = (s); i <= (t); ++i) 7 #define rFor(i,t,s) for (int i = (t); i >= (s); --i) 8 #define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i) 9 #define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i) 10 #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i) 11 #define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i) 12 13 #define pr(x) cout << #x << " = " << x << " " 14 #define prln(x) cout << #x << " = " << x << endl 15 16 #define LOWBIT(x) ((x)&(-x)) 17 18 #define ALL(x) x.begin(),x.end() 19 #define INS(x) inserter(x,x.begin()) 20 21 #define ms0(a) memset(a,0,sizeof(a)) 22 #define msI(a) memset(a,inf,sizeof(a)) 23 #define msM(a) memset(a,-1,sizeof(a)) 24 25 #define MP make_pair 26 #define PB push_back 27 #define ft first 28 #define sd second 29 30 template<typename T1, typename T2> 31 istream &operator>>(istream &in, pair<T1, T2> &p) { 32 in >> p.first >> p.second; 33 return in; 34 } 35 36 template<typename T> 37 istream &operator>>(istream &in, vector<T> &v) { 38 for (auto &x: v) 39 in >> x; 40 return in; 41 } 42 43 template<typename T1, typename T2> 44 ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) { 45 out << "[" << p.first << ", " << p.second << "]" << " "; 46 return out; 47 } 48 49 inline int gc(){ 50 static const int BUF = 1e7; 51 static char buf[BUF], *bg = buf + BUF, *ed = bg; 52 53 if(bg == ed) fread(bg = buf, 1, BUF, stdin); 54 return *bg++; 55 } 56 57 inline int ri(){ 58 int x = 0, f = 1, c = gc(); 59 for(; c<48||c>57; f = c=='-'?-1:f, c=gc()); 60 for(; c>47&&c<58; x = x*10 + c - 48, c=gc()); 61 return x*f; 62 } 63 64 typedef long long LL; 65 typedef unsigned long long uLL; 66 typedef pair< double, double > PDD; 67 typedef pair< int, int > PII; 68 typedef pair< string, int > PSI; 69 typedef set< int > SI; 70 typedef vector< int > VI; 71 typedef vector< PII > VPII; 72 typedef map< int, int > MII; 73 typedef pair< LL, LL > PLL; 74 typedef vector< LL > VL; 75 typedef vector< VL > VVL; 76 const double EPS = 1e-10; 77 const LL inf = 0x7fffffff; 78 const LL infLL = 0x7fffffffffffffffLL; 79 const LL mod = 1e9 + 7; 80 const int maxN = 2e5 + 7; 81 const LL ONE = 1; 82 const LL evenBits = 0xaaaaaaaaaaaaaaaa; 83 const LL oddBits = 0x5555555555555555; 84 85 LL fac[maxN]; 86 void init_fact() { 87 fac[0] = 1; 88 For(i, 1, maxN - 1) { 89 fac[i] = (i * fac[i - 1]) % mod; 90 } 91 } 92 93 //ax + by = gcd(a, b) = d 94 // 扩展欧几里德算法 95 /** 96 * a*x + b*y = 1 97 * 如果ab互质,有解 98 * x就是a关于b的逆元 99 * y就是b关于a的逆元 100 * 101 * 证明: 102 * a*x % b + b*y % b = 1 % b 103 * a*x % b = 1 % b 104 * a*x = 1 (mod b) 105 */ 106 inline void ex_gcd(LL a, LL b, LL &x, LL &y, LL &d){ 107 if (!b) {d = a, x = 1, y = 0;} 108 else{ 109 ex_gcd(b, a % b, y, x, d); 110 y -= x * (a / b); 111 } 112 } 113 114 // 求a关于p的逆元,如果不存在,返回-1 115 // a与p互质,逆元才存在 116 inline LL inv_mod(LL a, LL p = mod){ 117 LL d, x, y; 118 ex_gcd(a, p, x, y, d); 119 return d == 1 ? (x % p + p) % p : -1; 120 } 121 122 inline LL comb_mod(LL m, LL n) { 123 LL ret; 124 if(m > n) swap(m, n); 125 ret = (fac[n] * inv_mod(fac[m], mod)) % mod; 126 ret = (ret * inv_mod(fac[n - m], mod)) % mod; 127 return ret; 128 } 129 130 void add_mod(LL &a, LL b) { 131 a = (a + b) % mod; 132 if(a < 0) a += mod; 133 } 134 135 int N, M, K; 136 LL ans; 137 138 int main(){ 139 INIT(); 140 init_fact(); 141 cin >> N >> M >> K; 142 LL cnt = comb_mod(K - 2, N * M - 2); 143 144 ForLL(d, 1, N - 1) add_mod(ans, cnt * ((d * M * M * (N - d)) % mod)); 145 ForLL(d, 1, M - 1) add_mod(ans, cnt * ((d * N * N * (M - d)) % mod)); 146 cout << ans << endl; 147 return 0; 148 }