题目链接:http://acm.sdut.edu.cn/onlinejudge2/index.php/Home/Index/problemdetail/pid/2498.html
题目大意
略。
分析
注意!!!,此题只有一个源点,但有多个汇点。
这题本质上是求源点到汇点字典序的带权最长路,从前往后求比较麻烦,我们可以考虑从后往前求,求每个节点到某个汇点的最长距离和字典序最小的后继节点。
为此可先求拓扑序列,然后从后往前遍历拓扑序列,并进行松弛操作(同时也可以解决多汇点问题,SPFA则不行)。
代码如下
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
1 #include <bits/stdc++.h> 2 using namespace std; 3 4 #define INIT() ios::sync_with_stdio(false);cin.tie(0);cout.tie(0); 5 #define Rep(i,n) for (int i = 0; i < (int)(n); ++i) 6 #define For(i,s,t) for (int i = (int)(s); i <= (int)(t); ++i) 7 #define rFor(i,t,s) for (int i = (int)(t); i >= (int)(s); --i) 8 #define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i) 9 #define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i) 10 #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i) 11 #define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i) 12 13 #define pr(x) cout << #x << " = " << x << " " 14 #define prln(x) cout << #x << " = " << x << endl 15 16 #define LOWBIT(x) ((x)&(-x)) 17 18 #define ALL(x) x.begin(),x.end() 19 #define INS(x) inserter(x,x.begin()) 20 #define UNIQUE(x) x.erase(unique(x.begin(), x.end()), x.end()) 21 #define REMOVE(x, c) x.erase(remove(x.begin(), x.end(), c), x.end()); // 删去 x 中所有 c 22 #define TOLOWER(x) transform(x.begin(), x.end(), x.begin(),::tolower); 23 #define TOUPPER(x) transform(x.begin(), x.end(), x.begin(),::toupper); 24 25 #define ms0(a) memset(a,0,sizeof(a)) 26 #define msI(a) memset(a,0x3f,sizeof(a)) 27 #define msM(a) memset(a,-1,sizeof(a)) 28 29 #define MP make_pair 30 #define PB push_back 31 #define ft first 32 #define sd second 33 34 template<typename T1, typename T2> 35 istream &operator>>(istream &in, pair<T1, T2> &p) { 36 in >> p.first >> p.second; 37 return in; 38 } 39 40 template<typename T> 41 istream &operator>>(istream &in, vector<T> &v) { 42 for (auto &x: v) 43 in >> x; 44 return in; 45 } 46 47 template<typename T> 48 ostream &operator<<(ostream &out, vector<T> &v) { 49 Rep(i, v.size()) out << v[i] << " "[i == v.size()]; 50 return out; 51 } 52 53 template<typename T1, typename T2> 54 ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) { 55 out << "[" << p.first << ", " << p.second << "]" << " "; 56 return out; 57 } 58 59 inline int gc(){ 60 static const int BUF = 1e7; 61 static char buf[BUF], *bg = buf + BUF, *ed = bg; 62 63 if(bg == ed) fread(bg = buf, 1, BUF, stdin); 64 return *bg++; 65 } 66 67 inline int ri(){ 68 int x = 0, f = 1, c = gc(); 69 for(; c<48||c>57; f = c=='-'?-1:f, c=gc()); 70 for(; c>47&&c<58; x = x*10 + c - 48, c=gc()); 71 return x*f; 72 } 73 74 template<class T> 75 inline string toString(T x) { 76 ostringstream sout; 77 sout << x; 78 return sout.str(); 79 } 80 81 inline int toInt(string s) { 82 int v; 83 istringstream sin(s); 84 sin >> v; 85 return v; 86 } 87 88 //min <= aim <= max 89 template<typename T> 90 inline bool BETWEEN(const T aim, const T min, const T max) { 91 return min <= aim && aim <= max; 92 } 93 94 typedef long long LL; 95 typedef unsigned long long uLL; 96 typedef vector< int > VI; 97 typedef vector< bool > VB; 98 typedef vector< char > VC; 99 typedef vector< double > VD; 100 typedef vector< string > VS; 101 typedef vector< LL > VL; 102 typedef vector< VI > VVI; 103 typedef vector< VB > VVB; 104 typedef vector< VS > VVS; 105 typedef vector< VL > VVL; 106 typedef vector< VVI > VVVI; 107 typedef vector< VVL > VVVL; 108 typedef pair< int, int > PII; 109 typedef pair< LL, LL > PLL; 110 typedef pair< int, string > PIS; 111 typedef pair< string, int > PSI; 112 typedef pair< string, string > PSS; 113 typedef pair< double, double > PDD; 114 typedef vector< PII > VPII; 115 typedef vector< PLL > VPLL; 116 typedef vector< VPII > VVPII; 117 typedef vector< VPLL > VVPLL; 118 typedef vector< VS > VVS; 119 typedef map< int, int > MII; 120 typedef unordered_map< int, int > uMII; 121 typedef map< LL, LL > MLL; 122 typedef map< string, int > MSI; 123 typedef map< int, string > MIS; 124 typedef set< int > SI; 125 typedef stack< int > SKI; 126 typedef queue< int > QI; 127 typedef priority_queue< int > PQIMax; 128 typedef priority_queue< int, VI, greater< int > > PQIMin; 129 const double EPS = 1e-8; 130 const LL inf = 0x7fffffff; 131 const LL infLL = 0x7fffffffffffffffLL; 132 const LL mod = 1e9 + 7; 133 const int maxN = 1e4 + 7; 134 const LL ONE = 1; 135 const LL evenBits = 0xaaaaaaaaaaaaaaaa; 136 const LL oddBits = 0x5555555555555555; 137 138 struct Edge{ 139 int from, to, w; 140 int et, lt; 141 }; 142 143 istream& operator>> (istream& in, Edge &x) { 144 in >> x.from >> x.to >> x.w; 145 return in; 146 } 147 148 struct Vertex{ 149 int in, out, value, nxt; 150 VI next, prev; 151 int et, lt; 152 153 void clear() { 154 value = in = out = 0; 155 nxt = inf; 156 next.clear(); 157 prev.clear(); 158 et = 0; 159 lt = inf; 160 } 161 }; 162 163 int N, M, S, T; 164 Vertex V[maxN]; 165 vector< Edge > E; 166 VI topo, ans; 167 168 void addEdge(Edge &x) { 169 V[x.from].next.PB(E.size()); 170 V[x.to].prev.PB(E.size()); 171 ++V[x.to].in; 172 ++V[x.from].out; 173 E.PB(x); 174 } 175 176 void init() { 177 For(i, 1, N) V[i].clear(); 178 E.clear(); 179 topo.clear(); 180 ans.clear(); 181 } 182 183 void TopoSort() { 184 SKI sk; 185 For(i, 1, N) if(!V[i].in) sk.push(i); 186 187 while(!sk.empty()) { 188 int tmp = sk.top(); sk.pop(); 189 190 topo.PB(tmp); 191 Rep(i, V[tmp].next.size()) { 192 Edge &e = E[V[tmp].next[i]]; 193 if(!--V[e.to].in) sk.push(e.to); 194 } 195 } 196 } 197 198 // 在拓扑排序的基础上松弛 199 inline void relax() { 200 rFor(i, topo.size() - 1, 0) { 201 Rep(j, V[topo[i]].prev.size()) { 202 Edge &e = E[V[topo[i]].prev[j]]; 203 if(V[e.from].value < V[e.to].value + e.w || V[e.from].value == V[e.to].value + e.w && e.to < V[e.from].nxt) { 204 V[e.from].value = V[e.to].value + e.w; 205 V[e.from].nxt = e.to; 206 } 207 } 208 } 209 } 210 211 int main(){ 212 //freopen("MyOutput.txt","w",stdout); 213 //freopen("input.txt","r",stdin); 214 INIT(); 215 while(cin >> N >> M) { 216 init(); 217 For(i, 1, M) { 218 Edge t; 219 cin >> t; 220 addEdge(t); 221 } 222 223 TopoSort(); 224 S = topo.front(); 225 T = topo.back(); 226 227 relax(); 228 229 int t = S; 230 while(t != inf) { 231 ans.PB(t); 232 t = V[t].nxt; 233 } 234 235 cout << V[S].value << endl; 236 Rep(i, ans.size() - 1) cout << ans[i] << " " << ans[i + 1] << endl; 237 } 238 return 0; 239 }