zoukankan      html  css  js  c++  java
  • 树 [虚树, 动态规划]



    color{red}{正解部分}

    建出以 rr 为根的 虚树, 将 关键点 按照 虚树 中的深度排序, 这样可以保证一个点的祖先全部在其前面,

    F[i,j]F[i, j] 表示前 ii 个点, 分为 jj 组 的 方案数, g[i]g[i] 表示 iirr 的路径上 关键点 的个数,

    因为 ii 的祖先们必定不是在同一个组内,

    所以可以这样转移: F[i,j]=(ig[ai])×F[i1,j]+F[i1,j1]F[i, j] = (i - g[a_i]) imes F[i-1, j] + F[i-1,j-1], 最后 ans=i=1MF[k,i]ans =sumlimits_{i=1}^M F[k,i] .


    color{red}{实现部分}

    #include<bits/stdc++.h>
    #define reg register
    
    int read(){
            char c;
            int s = 0, flag = 1;
            while((c=getchar()) && !isdigit(c))
                    if(c == '-'){ flag = -1, c = getchar(); break ; }
            while(isdigit(c)) s = s*10 + c-'0', c = getchar();
            return s * flag;
    }
    
    const int mod = 1e9 + 7;
    const int maxn = 1e5 + 5;
    
    int N;
    int K;
    int M;
    int R;
    int K_;
    int Q_;
    int hs_cnt;
    int dfs_tim;
    int num0[2];
    int a[maxn];
    int b[maxn];
    int g[maxn];
    int Hs[maxn];
    int dfn[maxn];
    int stk[maxn];
    int dep0[maxn];
    int F[maxn][305];
    int Fk[maxn][20];
    int head[2][maxn];
    
    bool vis[maxn];
    bool used[maxn];
    
    struct Edge{ int nxt, to; } edge[2][maxn << 1];
    
    void Add(int from, int to, int id){ edge[id][++ num0[id]] = (Edge){ head[id][from], to }; head[id][from] = num0[id]; }
    
    void DFS_0(int k, int fa){ //
            dfn[k] = ++ dfs_tim; dep0[k] = dep0[fa] + 1;
            for(reg int i = 1; i <= 19; i ++) Fk[k][i] = Fk[Fk[k][i-1]][i-1];
            for(reg int i = head[0][k]; i; i = edge[0][i].nxt){ int to = edge[0][i].to; if(to == fa) continue ; Fk[to][0] = k; DFS_0(to, k); }
    }
    
    int Lca(int a, int b){ //
            if(dep0[a] < dep0[b]) std::swap(a, b);
            for(reg int i = 19; i >= 0; i --) if(dep0[Fk[a][i]] >= dep0[b]) a = Fk[a][i]; if(a == b) return a;
            for(reg int i = 19; i >= 0; i --) if(Fk[a][i] != Fk[b][i]) a = Fk[a][i], b = Fk[b][i]; return Fk[a][0];
    }
    
    bool cmp_1(int a, int b){ return dfn[a] < dfn[b]; }
    
    bool cmp_2(int a, int b){ return g[a] < g[b]; }
    
    int Dis(int u, int v){ return dep0[u] + dep0[v] - 2*dep0[Lca(u, v)]; }
    
    void Build(){
            std::sort(a+1, a+K+1, cmp_1);
            int top = 0; stk[++ top] = 1;
            for(reg int i = 1 + (a[1]==1); i <= K; i ++){
                    int u = stk[top], v = a[i];
                    int p = Lca(u, v);
                    if(!vis[p]) Hs[++ hs_cnt] = p, vis[p] = 1;
                    if(p == u) stk[++ top] = v;
                    else{
                            while(dep0[stk[top-1]] >= dep0[p] && top >= 2)
                                    Add(stk[top-1], stk[top], 1), Add(stk[top], stk[top-1], 1), top --;
                            if(stk[top] != p) Add(p, stk[top], 1), Add(stk[top], p, 1), stk[top] = p;
                            stk[++ top] = v;
                    }
            }
            for(reg int i = 1; i <= top; i ++)
                    if(i != top) Add(stk[i], stk[i+1], 1), Add(stk[i+1], stk[i], 1);
    }
    
    void DFS(int k, int fa){
            g[k] = g[fa] + used[fa];
            for(reg int i = head[1][k]; i; i = edge[1][i].nxt){ int to = edge[1][i].to; if(to == fa) continue ; DFS(to, k); }
    }
    
    void Dp(){
            std::sort(b+1, b+K_+1, cmp_2);
            F[0][0] = 1;
            for(reg int i = 1; i <= K_; i ++)
                    for(reg int j = 1; j <= M; j ++) F[i][j] = 0;
            for(reg int i = 1; i <= K_; i ++)
                    for(reg int j = 1; j <= M; j ++){
                            F[i][j] = F[i-1][j-1]; 
                            if(j > g[b[i]]) F[i][j] = (F[i][j] + 1ll*F[i-1][j]*(j-g[b[i]])%mod) % mod;
                    }
            int Ans = 0;
            for(reg int i = 1; i <= M; i ++) Ans = (Ans + F[K_][i]) % mod;
            printf("%d
    ", Ans);
    }
    
    void Work(){
            K = read(), M = read(), R = read();
            int flag = 0; hs_cnt = 0;
            for(reg int i = 1; i <= K; i ++){
                    b[i] = a[i] = read(); 
                    used[a[i]] = vis[a[i]] = 1;
                    Hs[++ hs_cnt] = a[i]; 
                    if(a[i] == R) flag = 1;
            }
            K_ = K;
            if(!flag) a[++ K] = R, Hs[++ hs_cnt] = R, vis[R] = 1;
            Build(); DFS(R, 0); Dp();
            num0[1] = 0; for(reg int i = 1; i <= hs_cnt; i ++) head[1][Hs[i]] = used[Hs[i]] = vis[Hs[i]] = 0;
    }
    
    int main(){
            freopen("tree.in", "r", stdin);
            freopen("tree.out", "w", stdout);
            N = read(); Q_ = read();
            for(reg int i = 1; i < N; i ++){ int u = read(), v = read(); Add(u, v, 0), Add(v, u, 0); }
            DFS_0(1, 0); while(Q_ --) Work(); 
            return 0;
    }
    
  • 相关阅读:
    迭代器和生成器
    案例:复制大文件
    案例:使用seek倒查获取日志文件的最后一行
    Leetcode165. Compare Version Numbers比较版本号
    Leetcode137. Single Number II只出现一次的数字2
    Leetcode129. Sum Root to Leaf Numbers求根到叶子节点数字之和
    Leetcode116. Populating Next Right Pointers in Each Node填充同一层的兄弟节点
    Leetcode114. Flatten Binary Tree to Linked List二叉树展开为链表
    Leetcode113. Path Sum II路径总和2
    C++stl中vector的几种常用构造方法
  • 原文地址:https://www.cnblogs.com/zbr162/p/11822425.html
Copyright © 2011-2022 走看看