zoukankan      html  css  js  c++  java
  • 03-树3 Tree Traversals Again (25 分)

    An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example, suppose that when a 6-node binary tree (with the keys numbered from 1 to 6) is traversed, the stack operations are: push(1); push(2); push(3); pop(); pop(); push(4); pop(); pop(); push(5); push(6); pop(); pop(). Then a unique binary tree (shown in Figure 1) can be generated from this sequence of operations. Your task is to give the postorder traversal sequence of this tree.


    Figure 1

    Input Specification:

    Each input file contains one test case. For each case, the first line contains a positive integer N (≤) which is the total number of nodes in a tree (and hence the nodes are numbered from 1 to N). Then 2 lines follow, each describes a stack operation in the format: "Push X" where X is the index of the node being pushed onto the stack; or "Pop" meaning to pop one node from the stack.

    Output Specification:

    For each test case, print the postorder traversal sequence of the corresponding tree in one line. A solution is guaranteed to exist. All the numbers must be separated by exactly one space, and there must be no extra space at the end of the line.

    Sample Input:

    6
    Push 1
    Push 2
    Push 3
    Pop
    Pop
    Push 4
    Pop
    Pop
    Push 5
    Push 6
    Pop
    Pop
    

    Sample Output:

    3 4 2 6 5 1
     #include<cstdio>
     #include<stack>
     #include<cstring>
     using namespace std;
     const int maxn = 35;
     struct Node{
         int data;
        Node* lchild;
        Node* rchild;    
     };
     int n,pre[maxn],in[maxn],num = 0;
     
     Node* createTree(int preL,int preR,int inL,int inR){
         if(preL > preR) return NULL;
         Node* root = new Node;
         root -> data = pre[preL];
         //printf("%d
    ",root->data);
         int k;
         for(k = inL; k <= inR; k++){
             if(in[k] == pre[preL]) break;
         }
         int numLeft = k - inL;
         root->lchild = createTree(preL+1,preL+numLeft,inL,k-1);
         root->rchild = createTree(preL+numLeft+1,preR,k+1,inR);
         return root; 
     }
     
     void postOrder(Node* root){
         if(root == NULL) return;
        postOrder(root->lchild);
        postOrder(root->rchild);
        printf("%d",root->data);
        num++;
        if(num < n) printf(" ");
     }
     
     int main(){
         int x,k1=0,k2=0;
         scanf("%d",&n);
         stack<int> st;
         char str[5];
         for(int i = 0; i < 2*n; i++){
             scanf("%s",str);
             if(strcmp(str,"Push") == 0){
                 scanf("%d",&x);
                 st.push(x);
                 pre[k1++] = x;
             }else{
                 in[k2++] = st.top();
                 st.pop();
             }
         }
        // printf("1
    ");
         Node* root = createTree(0,n-1,0,n-1);
        // printf("2
    ");
         postOrder(root);
         return 0;
     }
  • 相关阅读:
    【POJ 3162】 Walking Race (树形DP-求树上最长路径问题,+单调队列)
    【POJ 2152】 Fire (树形DP)
    【POJ 1741】 Tree (树的点分治)
    【POJ 2486】 Apple Tree (树形DP)
    【HDU 3810】 Magina (01背包,优先队列优化,并查集)
    【SGU 390】Tickets (数位DP)
    【SPOJ 2319】 BIGSEQ
    【SPOJ 1182】 SORTBIT
    【HDU 5456】 Matches Puzzle Game (数位DP)
    【HDU 3652】 B-number (数位DP)
  • 原文地址:https://www.cnblogs.com/wanghao-boke/p/10409358.html
Copyright © 2011-2022 走看看