zoukankan      html  css  js  c++  java
  • poj2187 Beauty Contest

    Beauty Contest
    Time Limit: 3000MS   Memory Limit: 65536K
    Total Submissions: 39574   Accepted: 12275

    Description

    Bessie, Farmer John's prize cow, has just won first place in a bovine beauty contest, earning the title 'Miss Cow World'. As a result, Bessie will make a tour of N (2 <= N <= 50,000) farms around the world in order to spread goodwill between farmers and their cows. For simplicity, the world will be represented as a two-dimensional plane, where each farm is located at a pair of integer coordinates (x,y), each having a value in the range -10,000 ... 10,000. No two farms share the same pair of coordinates. 

    Even though Bessie travels directly in a straight line between pairs of farms, the distance between some farms can be quite large, so she wants to bring a suitcase full of hay with her so she has enough food to eat on each leg of her journey. Since Bessie refills her suitcase at every farm she visits, she wants to determine the maximum possible distance she might need to travel so she knows the size of suitcase she must bring.Help Bessie by computing the maximum distance among all pairs of farms. 

    Input

    * Line 1: A single integer, N 

    * Lines 2..N+1: Two space-separated integers x and y specifying coordinate of each farm 

    Output

    * Line 1: A single integer that is the squared distance between the pair of farms that are farthest apart from each other. 

    Sample Input

    4
    0 0
    0 1
    1 1
    1 0
    

    Sample Output

    2
    

    Hint

    Farm 1 (0, 0) and farm 3 (1, 1) have the longest distance (square root of 2) 

    Source

    题意:求两个点之间的最长距离的平方.
    分析:旋转卡壳的模板题.注意在最后求的时候会有从最后一个点到第一个点的循环.还要特判只有2个点的情况.叉积求面积要注意正负性
    #include <cmath>
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    
    using namespace std;
    
    int n,tot,ans;
    
    struct node
    {
        int x,y;
    }p[50010],q[50010];
    
    node sub(node a,node b)
    {
        node temp;
        temp.x = a.x - b.x;
        temp.y = a.y - b.y;
        return temp;
    }
    
    int det(node a,node b)
    {
        return a.x * b.y - a.y * b.x;
    }
    
    int dist(node a)
    {
        return (a.x - p[1].x) * (a.x - p[1].x) + (a.y - p[1].y) * (a.y - p[1].y);
    }
    
    bool cmp(node a,node b)
    {
        int temp = det(sub(a,p[1]),sub(b,p[1]));
        if (temp != 0)
            return temp > 0;
        return dist(a) < dist(b);
    }
    
    int nextt(int i)
    {
        if (i == tot)
            return 1;
        return i + 1;
    }
    
    void solve()
    {
        int id = 1;
        for (int i = 1; i <= n; i++)
            if (p[i].x < p[id].x || (p[i].x == p[id].x && p[i].y < p[id].y))
                id = i;
        if (id != 1)
            swap(p[id],p[1]);
        sort(p + 2,p + 1 + n,cmp);
        q[++tot] = p[1];
        for (int i = 2; i <= n; i++)
        {
            while (tot >= 2 && det(sub(p[i],q[tot - 1]),sub(q[tot],q[tot - 1])) >= 0)
                tot--;
            q[++tot] = p[i];
        }
    }
    
    int D(node a,node b)
    {
        return (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y);
    }
    
    void solve2()
    {
        if (tot == 2)
        {
            ans = D(q[1],q[2]);
            return;
        }
        q[tot + 1] = q[1];
        for (int i = 1, j = 3; i <= tot; i++)
        {
            while (nextt(j) != i && det(sub(q[i + 1] , q[i]),sub(q[j],q[i])) <= det(sub(q[i + 1],q[i]),sub(q[nextt(j)],q[i])))
                j = nextt(j);
            ans = max(ans,D(q[j],q[i]));
            ans = max(ans,D(q[j],q[i + 1]));
        }
    }
    
    int main()
    {
        scanf("%d",&n);
        for (int i = 1; i <= n; i++)
            scanf("%d%d",&p[i].x,&p[i].y);
        solve();
        solve2();
        printf("%d
    ",ans);
    
        return 0;
    }
  • 相关阅读:
    Python-zip压缩-解压
    使用zabbix监控nginx
    原已经安装好的nginx,现在需要添加一个未被编译安装的模块:
    zabbix 邮件告警配置
    lnmp-zabbix
    Mysql新建用户和数据库并授权
    git标签管理
    Ubuntu下安装tomcat
    git分支管理
    Java拦截器
  • 原文地址:https://www.cnblogs.com/zbtrs/p/8111774.html
Copyright © 2011-2022 走看看