Time Limit: 5000MS | Memory Limit: 65536K | |
Total Submissions: 2016 | Accepted: 1162 |
Description
There is a rectangular area containing n × m cells. Two cells are marked with “2”, and another two with “3”. Some cells are occupied by obstacles. You should connect the two “2”s and also the two “3”s with non-intersecting lines. Lines can run only vertically or horizontally connecting centers of cells without obstacles.
Lines cannot run on a cell with an obstacle. Only one line can run on a cell at most once. Hence, a line cannot intersect with the other line, nor with itself. Under these constraints, the total length of the two lines should be minimized. The length of a line is defined as the number of cell borders it passes. In particular, a line connecting cells sharing their border has length 1.
Fig. 1(a) shows an example setting. Fig. 1(b) shows two lines satisfying the constraints above with minimum total length 18.
Figure 1: An example of setting and its solution
Input
The input consists of multiple datasets, each in the following format.
n m row1 … rown
n is the number of rows which satisfies 2 ≤ n ≤ 9. m is the number of columns which satisfies 2 ≤ m ≤ 9. Each rowi is a sequence of m digits separated by a space. The digits mean the following.
0:
Empty
1:
Occupied by an obstacle
2:
Marked with “2”
3:
Marked with “3”
The end of the input is indicated with a line containing two zeros separated by a space.
Output
For each dataset, one line containing the minimum total length of the two lines should be output. If there is no pair of lines satisfying the requirement, answer “0
” instead. No other characters should be contained in the output.
Sample Input
5 5 0 0 0 0 0 0 0 0 3 0 2 0 2 0 0 1 0 1 1 1 0 0 0 0 3 2 3 2 2 0 0 3 3 6 5 2 0 0 0 0 0 3 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 2 3 0 5 9 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 9 9 3 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 3 9 9 0 0 0 1 0 0 0 0 0 0 2 0 1 0 0 0 0 3 0 0 0 1 0 0 0 0 2 0 0 0 1 0 0 0 0 3 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 9 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 2 0 0
Sample Output
18 2 17 12 0 52 43
题目大意:找两条不相交的路径将矩阵中的2连起来并将3连起来,求最小路径长度和-2.
分析:挺神的一道题.
用插头表示左括号右括号肯定是不够的.那表示什么呢?和bzoj2331类似,他要求什么就表示什么嘛. 令状态0表示不存在插头,状态2表示这个插头是连接2的插头,状态3表示这个插头是连接3的插头.
这样会有一个问题:如何确保一条路径2个2,2个3都经过呢?
可以在转移的时候强行规定:如果不存在插头,那么空地只能建一对状态相同的插头,标记2或者3的地方只能建一个状态与之对应的插头. 这一对和一个有啥区别? 一对表示这个点会经过两次2或3,一个表示这个点已经经过2或3了,只需要再经过一次即可.
转移要分很多类,参看:传送门.
总得来说就是讨论. 看当前所在格子是哪一类格子,由此可以得出转移到的格子有什么限制,再来讨论看看是否符合这些限制来进行转移.
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; const int maxn = 60010,inf = 0x7ffffff; int n,m,a[20][20],pow[110],ans = inf,now,pre; struct node { int head[maxn],nextt[maxn],sum[maxn],sta[maxn],tot; void clear() { memset(head,-1,sizeof(head)); tot = 0; memset(sum,127 / 3,sizeof(sum)); } void push(int x,int v) { int hashh = x % maxn; for (int i = head[hashh]; i >= 0; i = nextt[i]) { if (sta[i] == x) { sum[i] = min(sum[i],v); return; } } sum[tot] = v; sta[tot] = x; nextt[tot] = head[hashh]; head[hashh] = tot++; } }f[2]; int turnleft(int x,int pos) { return x << pow[pos]; } int get(int x,int pos) { return (x >> pow[pos]) & 3; } int del(int x,int i,int j) { return x & (~(3 << pow[i])) & (~(3 << pow[j])); } void solve2(int x,int y,int k) { int p = get(f[pre].sta[k],y - 1); int q = get(f[pre].sta[k],y); int staa = del(f[pre].sta[k],y - 1,y); int v = f[pre].sum[k]; if (staa > (1 << pow[m + 1])) return; if (a[x][y] == 1) { if (p + q == 0) { f[now].push(staa,v); return; } } else if (!p && !q) { if (a[x][y] == 0) { f[now].push(staa,v); if (a[x + 1][y] + a[x][y + 1] == 5 || a[x + 1][y] == 1 || a[x][y + 1] == 1) return; if (a[x + 1][y] == 2 || a[x][y + 1] == 2) f[now].push(staa | turnleft(2,y - 1) | turnleft(2,y),v + 1); else if (a[x + 1][y] == 3 || a[x][y + 1] == 3) f[now].push(staa | turnleft(3,y - 1) | turnleft(3,y),v + 1); else { f[now].push(staa | turnleft(2,y - 1) | turnleft(2,y),v + 1); f[now].push(staa | turnleft(3,y - 1) | turnleft(3,y),v + 1); } } else { if (a[x + 1][y] != 5 - a[x][y] && a[x + 1][y] != 1) f[now].push(staa | turnleft(a[x][y],y - 1),v + 1); if (a[x][y + 1] != 5 - a[x][y] && a[x][y + 1] != 1) f[now].push(staa | turnleft(a[x][y],y),v + 1); } } else if (p && q) { if (p + q == 5 || a[x][y] != 0) return; f[now].push(staa,v + 1); } else if (p && !q) { if (a[x][y] == 0) { if (a[x][y + 1] == 0 || a[x][y + 1] == p) f[now].push(staa | turnleft(p,y),v + 1); if (a[x + 1][y] == 0 || a[x + 1][y] == p) f[now].push(staa | turnleft(p,y - 1),v + 1); } else if (a[x][y] == p) f[now].push(staa,v + 1); } else if (!p && q) { if (a[x][y] == 0) { if (a[x][y + 1] == 0 || a[x][y + 1] == q) f[now].push(staa | turnleft(q,y),v + 1); if (a[x + 1][y] == 0 || a[x + 1][y] == q) f[now].push(staa | turnleft(q,y - 1),v + 1); } else if (a[x][y] == q) f[now].push(staa,v + 1); } } void solve() { now = 0,pre = 1; f[0].clear(); f[0].push(0,0); for (int i = 1; i <= n; i++) { pre = now; now ^= 1; f[now].clear(); for (int k = 0; k < f[pre].tot; k++) f[now].push(turnleft(f[pre].sta[k],1),f[pre].sum[k]); for (int j = 1; j <= m; j++) { pre = now; now ^= 1; f[now].clear(); for (int k = 0; k < f[pre].tot; k++) solve2(i,j,k); } } for (int i = 0; i < f[now].tot; i++) if (f[now].sta[i] == 0) ans = min(ans,f[now].sum[i]); } int main() { for (int i = 1; i <= 100; i++) pow[i] = i * 2; while (scanf("%d%d",&n,&m) == 2 && (n + m)) { ans = inf; for (int i = 1; i <= n; i++) for (int j = 1; j <= m; j++) scanf("%d",&a[i][j]); solve(); if (ans == inf) puts("0"); else printf("%d ",ans - 2); } return 0; }