zoukankan      html  css  js  c++  java
  • Matalab之模糊KMeans实现

    这节继续上节的KMeans进行介绍,上节主要是对模糊KMeans方法的原理做了介绍,没有实践印象总是不深刻,前段时间有个师姐让我帮着写了个模糊KMeans的算法,今天就拿她给出的例子来对这个方法做个实践讲解。她给的数据是n个行业在m年内的资源消耗参数,想通过FCM算法对这些行业进行聚类,从而在能耗上对它们进行分类。处理的数据很简单,所以用FCM这种简单的聚类算法就足可以达到要求了。给出数据的一角:

    具体处理过程我就不啰嗦了,核心思想就是FCM算法,给出一个具体的流程图

    根据步骤我将算法实现分成了五个子函数和一个主函数,直接上代码(其中有详细的解释)

    % 子函数1
    function U = initfcm(cluster_n, data_n)
    % 初始化fcm的隶属度函数矩阵
    % 输入:
    %   cluster_n   ---- 聚类中心个数
    %   data_n      ---- 样本点数
    % 输出:
    %   U           ---- 初始化的隶属度矩阵
    U = rand(cluster_n, data_n);
    col_sum = sum(U);
    U = U./col_sum(ones(cluster_n, 1), :);
    % 子函数2
    function [U_new, center, obj_fcn] = stepfcm(data, U, cluster_n, expo)
    % 模糊C均值聚类时迭代的一步
    % 输入:
    %   data        ---- nxm矩阵,表示n个样本,每个样本具有m的维特征值
    %   U           ---- 隶属度矩阵
    %   cluster_n   ---- 标量,表示聚合中心数目,即类别数
    %   expo        ---- 隶属度矩阵U的指数                      
    % 输出:
    %   U_new       ---- 迭代计算出的新的隶属度矩阵
    %   center      ---- 迭代计算出的新的聚类中心
    %   obj_fcn     ---- 目标函数值
    mf = U.^expo;       % 隶属度矩阵进行指数运算结果
    center = mf*data./((ones(size(data, 2), 1)*sum(mf'))'); % 新聚类中心(5.4)式
    dist = distfcm(center, data);       % 计算距离矩阵
    obj_fcn = sum(sum((dist.^2).*mf));  % 计算目标函数值 (5.1)式
    tmp = dist.^(-2/(expo-1));     
    U_new = tmp./(ones(cluster_n, 1)*sum(tmp));  % 计算新的隶属度矩阵 (5.3)式
    % 子函数3
    function out = distfcm(center, data)
    % 计算样本点距离聚类中心的距离
    % 输入:
    %   center     ---- 聚类中心
    %   data       ---- 样本点
    % 输出:
    %   out        ---- 距离
    out = zeros(size(center, 1), size(data, 1));
    for k = 1:size(center, 1), % 对每一个聚类中心
        % 每一次循环求得所有样本点到一个聚类中心的距离
        out(k, :) = sqrt(sum(((data-ones(size(data,1),1)*center(k,:)).^2)',1));
    end
    % 子函数4
    function DataOut = Unitfcm(DataOrg)
    % 对输入数据进行标准化和归一化处理
    % 输入:
    %   DataOrg       ---- 样本数据
    % 输出:
    %   DataOut        ---- 归一化数据
    X_col=sum(DataOrg,1)./size(DataOrg,1);
    S_col=sqrt(sum((DataOrg-X_col(ones(size(DataOrg,1),1),:)).^2,1)./(size(DataOrg,1)-1));
    DataUnit=(DataOrg-X_col(ones(size(DataOrg,1),1),:))./S_col(ones(size(DataOrg,1),1),:);%标准化结果
    C_col=max(abs(DataUnit),[],1);
    DataOut=(DataUnit+C_col(ones(size(DataUnit,1),1),:))./(2*C_col(ones(size(DataUnit,1),1),:));%归一化后的结果
    % 子函数5
    function ShowResult(U)
    % 呈现聚类结果
    % 输入:
    %   U       ---- 隶属度矩阵
    for i=1:size(U,2)
        data=U(:,i);
        [row,col]=find(data==max(data));
        disp(['',num2str(i),'个样本属于',num2str(row),'']);
    end
    function [center, U, obj_fcn] = FCMClust(data, cluster_n, options)
    % FCMClust.m   采用模糊C均值对数据集data聚为cluster_n类 
    % 用法:
    %   1.  [center,U,obj_fcn] = FCMClust(Data,N_cluster,options);
    %   2.  [center,U,obj_fcn] = FCMClust(Data,N_cluster);
    % 输入:
    %   data        ---- nxm矩阵,表示n个样本,每个样本具有m的维特征值
    %   N_cluster   ---- 标量,表示聚合中心数目,即类别数
    %   options     ---- 4x1矩阵,其中
    %       options(1):  隶属度矩阵U的指数,>1                  (缺省值: 2.0)
    %       options(2):  最大迭代次数                           (缺省值: 100)
    %       options(3):  隶属度最小变化量,迭代终止条件           (缺省值: 1e-5)
    %       options(4):  每次迭代是否输出信息标志                (缺省值: 1)
    % 输出:
    %   center      ---- 聚类中心
    %   U           ---- 隶属度矩阵
    %   obj_fcn     ---- 目标函数值
    %   Example:
    %       data = rand(100,2);
    %       [center,U,obj_fcn] = FCMClust(data,2);
    %       plot(data(:,1), data(:,2),'o');
    %       hold on;
    %       maxU = max(U);
    %       index1 = find(U(1,:) == maxU);
    %       index2 = find(U(2,:) == maxU);
    %       line(data(index1,1),data(index1,2),'marker','*','color','g');
    %       line(data(index2,1),data(index2,2),'marker','*','color','r');
    %       plot([center([1 2],1)],[center([1 2],2)],'*','color','k')
    %       hold off;
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    
    if nargin ~= 2 & nargin ~= 3,    %判断输入参数个数只能是2个或3个
        error('Too many or too few input arguments!');
    end
    
    data_n = size(data, 1); % 求出data的第一维(rows)数,即样本个数
    in_n = size(data, 2);   % 求出data的第二维(columns)数,即特征值长度
    % 默认操作参数
    default_options = [2;    % 隶属度矩阵U的指数
        100;                % 最大迭代次数 
        1e-5;               % 隶属度最小变化量,迭代终止条件
        1];                 % 每次迭代是否输出信息标志 
    
    if nargin == 2,
        options = default_options;
     else       %分析有options做参数时候的情况
        % 如果输入参数个数是二那么就调用默认的option;
        if length(options) < 4, %如果用户给的opition数少于4个那么其他用默认值;
            tmp = default_options;
            tmp(1:length(options)) = options;
            options = tmp;
        end
        % 返回options中是数的值为0(如NaN),不是数时为1
        nan_index = find(isnan(options)==1);
        %将denfault_options中对应位置的参数赋值给options中不是数的位置.
        options(nan_index) = default_options(nan_index);
        if options(1) <= 1, %如果模糊矩阵的指数小于等于1
            error('The exponent should be greater than 1!');
        end
    end
    %将options 中的分量分别赋值给四个变量;
    expo = options(1);          % 隶属度矩阵U的指数
    max_iter = options(2);        % 最大迭代次数 
    min_impro = options(3);        % 隶属度最小变化量,迭代终止条件
    display = options(4);        % 每次迭代是否输出信息标志 
    
    obj_fcn = zeros(max_iter, 1);    % 初始化输出参数obj_fcn
    
    U = initfcm(cluster_n, data_n);     % 初始化模糊分配矩阵,使U满足列上相加为1,
    
    %添加输入数据归一化处理
    DataInfo=Unitfcm(data);
    
    % Main loop  主要循环
    for i = 1:max_iter,
        %在第k步循环中改变聚类中心ceneter,和分配函数U的隶属度值;
        [U, center, obj_fcn(i)] = stepfcm(DataInfo, U, cluster_n, expo);
        if display, 
            fprintf('FCM:Iteration count = %d, obj. fcn = %f
    ', i, obj_fcn(i));
        end
        % 终止条件判别
        if i > 1,
            if abs(obj_fcn(i) - obj_fcn(i-1)) < min_impro, 
                
                break;
            end,
        end
    end
    
    iter_n = i;    % 实际迭代次数 
    obj_fcn(iter_n+1:max_iter) = [];

    OK,结束了,但愿能对减少大家的工作量带来帮助。

  • 相关阅读:
    3、Ubantu下安装nginx
    2、关于mongodb外部访问不成功的问题
    1. libcurl.so.4: cannot open shared object file: No such file or directory
    Php 笔记
    Jade之Plain Text
    Jade之Mixins
    Jade之Interpolation
    Jade之Template Inheritance
    Jade之Includes
    Jade之Filters
  • 原文地址:https://www.cnblogs.com/zcftech/p/3147062.html
Copyright © 2011-2022 走看看