zoukankan      html  css  js  c++  java
  • [JSOI2008]球形空间产生器(线性代数+高斯消元)

    题目大意

    给你一个n维球体上的n+1个点,让你求这个n维球体的球心。数据保证球心是唯一的。

    Analysis

    将球心设出来为$(x_1, x_2, cdots, x_n)$,设半径为$r$。设球上一点为$(y_1, y_2, cdots, y_n)$,根据n维空间内两点之间距离公式得$sum_{i=1}^n (y_i-x_i)^2=r^2$。

    设每个点表示为$(a_{i,1}, a_{i,2}, cdots, a_{i,n})$。可以得到方程组:

    $$egin{cases}
    sum_{i=1}^n (a_{1,i}-x_i)^2=r^2\
    sum_{i=1}^n (a_{2,i}-x_i)^2=r^2\
    cdots\
    sum_{i=1}^n (a_{n+1,i}-x_i)^2=r^2\
    end{cases}
    $$

    将第$i$个方程与第$i+1$个方程相减得:

    $$egin{cases}
    sum_{i=1}^n (a_{1,i}^2-a_{2,i}^2-2x_i(a_{1,i}-a_{2,i}))=0\
    sum_{i=1}^n (a_{2,i}^2-a_{3,i}^2-2x_i(a_{2,i}-a_{3,i}))=0\
    cdots\
    sum_{i=1}^n (a_{n,i}^2-a_{n+1,i}^2-2x_i(a_{n,i}-a_{n+1,i}))=0\
    end{cases}
    $$

    再变成标准形式:

    $$egin{cases}
    sum_{i=1}^n (2x_i(a_{1,i}-a_{2,i}))=sum_{i=1}^n a_{1,i}^2-a_{2,i}^2\
    sum_{i=1}^n (2x_i(a_{2,i}-a_{3,i}))=sum_{i=1}^n a_{2,i}^2-a_{3,i}^2\
    cdots\
    sum_{i=1}^n (2x_i(a_{n,i}-a_{n+1,i}))=sum_{i=1}^n a_{n,i}^2-a_{n+1,i}^2\
    end{cases}
    $$

    n个未知数n个方程,直接高斯消元。因为题目保证有解所以不需要做过多的判断。

    Code:

    #include <iostream>
    #include <cstdio>
    using namespace std;
    const int N = 11;
    int n;
    double a[N][N], A[N][N], B[N];
    void Gauss() {
        
        for (int i = 1; i <= n; i++) {
            int mx = i;
            for (int j = i + 1; j <= n; j++) {
                if (A[j][i] > A[mx][i]) {
                    mx = j;
                }
            }
            for (int j = i; j <= n; j++) {
                swap(A[i][j], A[mx][j]);
            }
            swap(B[i], B[mx]);
            if (!A[i][i]) continue;
            for (int j = 1; j <= n; j++) {
                if (i == j) continue;
                double Rate = A[j][i] / A[i][i];
                for (int k = i; k <= n; k++) {
                    A[j][k] -= A[i][k] * Rate;
                }
                B[j] -= B[i] * Rate;
            }
        }
    }
    int main() {
        scanf("%d", &n);
        for (int i = 1; i <= n + 1; i++) {
            for (int j = 1; j <= n; j++) {
                scanf("%lf", &a[i][j]);
            }
        }
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= n; j++) {
                A[i][j] = 2.0 * (a[i][j] - a[i + 1][j]);
                B[i] += a[i][j] * a[i][j] - a[i + 1][j] * a[i + 1][j];
            }
        }
        Gauss();
        for (int i = 1; i <= n; i++) printf("%.3lf ", B[i] / A[i][i]);
        return 0;
    }
  • 相关阅读:
    管理反思(阶段)
    应用软件系统程序员的三个立面
    再优秀那么一点点
    TCP相关时延
    go wiki整理1
    慢就是快
    给自己一点机会
    竞争
    go mem
    币圈再次过年
  • 原文地址:https://www.cnblogs.com/zcr-blog/p/13155348.html
Copyright © 2011-2022 走看看